Advertisement

Introduction and Theoretical Framework

  • Javier Montejo BerlingenEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The Standard Model (SM) of particle physics is the theoretical framework that so far describes best the subatomic world.

Keywords

Dark Matter Higgs Boson Minimal Supersymmetric Standard Model Extra Dimension Higgs Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    ATLAS Collaboration (2012) Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys Lett B 716:1. doi: 10.1016/j.physletb.2012.08.020. arXiv:1207.7214 [hep-ex]
  2. 2.
    CMS Collaboration (2012) Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys Lett B 716:30. doi: 10.1016/j.physletb.2012.08.021. arXiv:1207.7235 [hep-ex]
  3. 3.
    Glashow S (1961) Partial symmetries of weak interactions. Nucl Phys 22:525. doi: 10.1016/0029-5582(61)90469-2
  4. 4.
    Weinberg S (1967) A model of leptons. Phys Rev Lett 19:1264. doi: 10.1103/PhysRevLett.19.1264
  5. 5.
    Salam A (1980) Gauge unification of fundamental forces. Rev Mod Phys 52:525. doi: 10.1103/RevModPhys.52.525
  6. 6.
    Chin Phys C (2014) Review of particle physics. 38:090001. doi: 10.1088/1674-1137/38/9/090001
  7. 7.
    Goldstone J, Salam A, Weinberg S (1962) Broken symmetries. Phys Rev 965:127. doi: 10.1103/PhysRev.127.965
  8. 8.
    Bethke S (2013) World summary of \(\alpha _s\) (2012). Nucl Phys Proc Suppl 234:229. doi: 10.1016/j.nuclphysbps.2012.12.020. arXiv:1210.0325 [hep-ex]
  9. 9.
    Aitchison I, Hey A (2004) Gauge theories in particle physics: a practical introduction. Vol. 2: Non-Abelian gauge theories: QCD and the electroweak theory. Taylor & Francis, OxfordGoogle Scholar
  10. 10.
    Glashow SL, Iliopoulos J, Maiani L (1970) Weak interactions with Lepton-Hadron symmetry. Phys Rev D 1285:2. doi: 10.1103/PhysRevD.2.1285
  11. 11.
    SLAC Collaboration (1974) Discovery of a narrow resonance in \({e}^{+}{e}^{-}\) annihilation. Phys Rev Lett 33:1406. doi: 10.1103/PhysRevLett.33.1406
  12. 12.
    MIT Collaboration (1974) Experimental observation of a heavy particle \(J\). Phys Rev Lett 33:1404. doi: 10.1103/PhysRevLett.33.1404
  13. 13.
    Herb S, Hom D, Lederman L, Sens J, Snyder H et al (1977) Observation of a dimuon resonance at 9.5-GeV in 400-GeV proton-nucleus collisions. Phys Rev Lett 39:252. doi: 10.1103/PhysRevLett.39.252
  14. 14.
    Perl ML, Abrams G, Boyarski A, Breidenbach M, Briggs D et al (1975) Evidence for anomalous lepton production in e+ - e- annihilation. Phys Rev Lett 35:1489. doi: 10.1103/PhysRevLett.35.1489
  15. 15.
    DONUT, Kodama K et al (2001) Observation of tau neutrino interactions. Phys Lett B504:218–224. doi: 10.1016/S0370-2693(01)00307-0. arXiv:hep-ex/0012035 [hep-ex]
  16. 16.
    Kobayashi M, Maskawa T (1973) CP violation in the renormalizable theory of weak interaction. Prog Theor Phys 49:652. doi: 10.1143/PTP.49.652
  17. 17.
    UA1 Collaboration, Arnison G et al (1983) Experimental observation of isolated large transverse energy electrons with associated missing energy at \(\sqrt{s} = 540~GeV\). Phys Lett B 122:103. doi: 10.1016/0370-2693(83)91177-2
  18. 18.
    CDF Collaboration (1995) Observation of top quark production in \(\bar{p}p\) collisions. Phys Rev Lett 74:2626. doi: 10.1103/PhysRevLett.74.2626
  19. 19.
    D0 collaboration, Observation of the top quark (1995) Phys Rev Lett 74:2632. doi: 10.1103/PhysRevLett.74.2632
  20. 20.
    Baak M, Kogler R (2013) The global electroweak standard model fit after the Higgs discovery. arXiv:1306.0571 [hep-ph]
  21. 21.
    ATLAS and CMS Collaborations (2015) Combined measurement of the Higgs Boson mass in \(pp\) collisions at \(\sqrt{s}=7\) and 8 TeV with the ATLAS and CMS Experiments. arXiv:1503.07589 [hep-ex]
  22. 22.
    ATLAS Collaboration (2013) Evidence for the spin-0 nature of the Higgs Boson using ATLAS data. Phys Lett B 726:120. doi: 10.1016/j.physletb.2013.08.026. arXiv:1307.1432 [hep-ex]
  23. 23.
    Super-Kamiokande Collaboration (1998) Evidence for oscillation of atmospheric neutrinos. Phys Rev Lett 81:1562. doi: 10.1103/PhysRevLett.81.1562. arXiv:hep-ex/9807003 [hep-ex]
  24. 24.
    Begeman K, Broeils A, Sanders R (1991) Extended rotation curves of spiral galaxies: dark haloes and modified dynamics. Mon Not R Astron Soc 249:523. doi: 10.1093/mnras/249.3.523
  25. 25.
    Larson D, Dunkley J, Hinshaw G, Komatsu E, Nolta M et al (2011) Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: power spectra and WMAP-derived parameters. Astrophys J Suppl 192:16. doi: 10.1088/0067-0049/192/2/16. arXiv:1001.4635 [astro-ph.CO]
  26. 26.
    Planck Collaboration (2014) Planck 2013 results. XVI. Cosmological parameters. Astron Astrophys 571:A16. doi: 10.1051/0004-6361/201321591. arXiv:1303.5076 [astro-ph.CO]
  27. 27.
    ATLAS, CDF, CMS and D0 Collaborations (2014) First combination of Tevatron and LHC measurements of the top-quark mass. arXiv:1403.4427 [hep-ex]
  28. 28.
    Haag R, Lopuszanski JT, Sohnius M (1975) All possible generators of supersymmetries of the S-matrix. Nucl Phys B88:257. doi: 10.1016/0550-3213(75)90279-5
  29. 29.
    Drees M (1996) An introduction to supersymmetry. arXiv:hep-ph/9611409 [hep-ph]
  30. 30.
    Ellis JR, Nanopoulos DV (1982) Flavor changing neutral interactions in broken supersymmetric theories. Phys Lett B 110:44. doi: 10.1016/0370-2693(82)90948-0
  31. 31.
    Arkani-Hamed N, Dimopoulos S, Dvali G (1998) The hierarchy problem and new dimensions at a millimeter. Phys Lett B 429:263. doi: 10.1016/S0370-2693(98)00466-3. arXiv:hep-ph/9803315 [hep-ex]
  32. 32.
    ATLAS Collaboration (2015) Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \(\sqrt{s}=8\) TeV with the ATLAS detector. arXiv:1502.01518 [hep-ex]
  33. 33.
    Appelquist T, Cheng H-C, Dobrescu BA (2001) Bounds on universal extra dimensions. Phys Rev D 64:035002. doi: 10.1103/PhysRevD.64.035002. arXiv:hep-ph/0012100 [hep-ex]
  34. 34.
    Burdman G, Dobrescu BA, Ponton E (2006) Resonances from two universal extra dimensions. Phys Rev D 74:075008. doi: 10.1103/PhysRevD.74.075008. arXiv:hep-ph/0601186
  35. 35.
    Cacciapaglia G, Deandrea A, Llodra-Perez J (2010) A dark matter candidate from Lorentz invariance in 6D. JHEP 1003:083. doi: 10.1007/JHEP03(2010)083. arXiv:0907.4993 [hep-ex]
  36. 36.
    Randall L, Sundrum R (1999) An alternative to compactification. Phys Rev Lett 83:4690. doi: 10.1103/PhysRevLett.83.4690. arXiv:hep-th/9906064 [hep-ex]
  37. 37.
    Contino R, Kramer T, Son M, Sundrum R (2007) Warped/composite phenomenology simplified. JHEP 0705:074. doi: 10.1088/1126-6708/2007/05/074. arXiv:hep-ph/0612180 [hep-ex]
  38. 38.
    Randall L, Sundrum R (1999) A large mass hierarchy from a small extra dimension. Phys Rev Lett 83:3370. doi: 10.1103/PhysRevLett.83.3370. arXiv:hep-ph/9905221 [hep-ex]
  39. 39.
    Kaplan DB, Georgi H, Dimopoulos S (1984) Composite Higgs scalars. Phys Lett B 136(3):187. doi: 10.1016/0370-2693(84)91178-X
  40. 40.
    Contino R, Rold LD, Pomarol A (2007) Light custodians in natural composite Higgs models. Phys Rev D 75:055014. doi: 10.1016/j.nuclphysb.2006.10.012. arXiv:0607106 [hep-ex]
  41. 41.
    Agashe K, Contino R, Pomarol A (2005) The minimal composite Higgs model. Nucl Phys B 719:165. doi: 10.1016/j.nuclphysb.2005.04.035. arXiv:hep-ph/0412089
  42. 42.
    Pomarol A, Serra J (2008) Top quark compositeness: feasibility and implications. Phys Rev D 78:074026. doi: 10.1103/PhysRevD.78.074026. arXiv:0806.3247 [hep-ex]
  43. 43.
    Kumar K, Tait TM, Vega-Morales R (2009) Manifestations of top compositeness at colliders. JHEP 0905:022. doi: 10.1088/1126-6708/2009/05/022. arXiv:0901.3808 [hep-ex]
  44. 44.
    Lillie B, Shu J, Tait TM (2008) Top compositeness at the tevatron and LHC. JHEP 0804:087. doi: 10.1088/1126-6708/2008/04/087. arXiv:0712.3057 [hep-ex]
  45. 45.
    Georgi H, Kaplan L, Morin D, Schenk A (1995) Effects of top compositeness. Phys Rev D 51:3888. doi: 10.1103/PhysRevD.51.3888. arXiv:hep-ph/9410307
  46. 46.
    del Aguila F, Bowick MJ (1983) The possibility of new Fermions with \(\Delta \) I = 0 mass. Nucl Phys B 224:107. doi: 10.1016/0550-3213(83)90316-4
  47. 47.
    Aguilar-Saavedra J (2009) Identifying top partners at LHC. JHEP 0911:030. doi: 10.1088/1126-6708/2009/11/030. arXiv:0907.3155 [hep-ph]
  48. 48.
    Frampton PH, Hung P, Sher M (2000) Quarks and leptons beyond the third generation. Phys Rep 330:263. doi: 10.1016/S0370-1573(99)00095-2. arXiv:hep-ph/9903387 [hep-ex]
  49. 49.
    Hewett JL, Rizzo TG (1989) Low-energy phenomenology of superstring-inspired \(E_6\) models. Phys Rep 183(5–6):193. doi: 10.1016/0370-1573(89)90071-9
  50. 50.
    Atre A, Azuelos G, Carena M, Han T, Ozcan E et al (2011) Model-independent searches for new quarks at the LHC. JHEP 1108:080. doi: 10.1007/JHEP08(2011)080. arXiv:1102.1987 [hep-ex]
  51. 51.
    Aguilar-Saavedra J, Benbrik R, Heinemeyer S, Prez-Victoria M (2013) Handbook of vectorlike quarks: mixing and single production. Phys. Rev. D 88:094010. doi: 10.1103/PhysRevD.88.094010. arXiv:1306.0572 [hep-ph]
  52. 52.
    del Aguila F, Aguilar-Saavedra J, Miquel R (1999) Constraints on top couplings in models with exotic quarks. Phys Rev Lett 82:1628. doi: 10.1103/PhysRevLett.82.1628. arXiv:hep-ph/9808400 [hep-ex]
  53. 53.
    Beenakker W, Kramer M, Plehn T, Spira M, Zerwas P (1998) Stop production at hadron colliders. Nucl Phys B515:3. doi: 10.1016/S0550-3213(98)00014-5. arXiv:hep-ph/9710451 [hep-ex]
  54. 54.
    Barger VD, Stange A, Phillips R (1991) Four heavy quark hadroproduction. Phys Rev D 44:1987. doi: 10.1103/PhysRevD.44.1987
  55. 55.
    Barger V, Keung W-Y, Yencho B (2010) Triple-top signal of new physics at the LHC. Phys Lett B 687:70. doi: 10.1016/j.physletb.2010.03.001. arXiv:1001.0221 [hep-ex]
  56. 56.
    Cheng H-C, Matchev KT, Schmaltz M (2002) Bosonic supersymmetry? Getting fooled at the CERN LHC. Phys Rev D 66:056006. doi: 10.1103/PhysRevD.66.056006. arXiv:hep-ph/0205314 [hep-ex]
  57. 57.
    Cacciapaglia G, Chierici R, Deandrea A, Panizzi L, Perries S et al (2011) Four tops on the real projective plane at LHC. JHEP 1110:042. doi: 10.1007/JHEP10(2011)042. arXiv:1107.4616 [hep-ex]
  58. 58.
    Cheng H-C, Feng JL, Matchev KT (2002) Kaluza-Klein dark matter. Phys Rev Lett 89:211301. doi: 10.1103/PhysRevLett.89.211301. arXiv:hep-ph/0207125 [hep-ex]
  59. 59.
    Servant G, Tait TM (2003) Is the lightest Kaluza-Klein particle a viable dark matter candidate? Nucl Phys B650:391. doi: 10.1016/S0550-3213(02)01012-X. arXiv:hep-ph/0206071 [hep-ex]
  60. 60.
    Arbey A, Cacciapaglia G, Deandrea A, Kubik B (2013) Dark matter in a twisted bottle. JHEP 1301:147. doi: 10.1007/JHEP01(2013)147. arXiv:1210.0384 [hep-ex]
  61. 61.
    Plehn T, Tait TM (2009) Seeking Sgluons. J Phys G36, 075001. doi: 10.1088/0954-3899/36/7/075001. arXiv:0810.3919 [hep-ph]
  62. 62.
    Choi S, Drees M, Kalinowski J, Kim J, Popenda E et al (2009) Color-octet scalars of N=2 supersymmetry at the LHC. Phys Lett B 672:246. doi: 10.1016/j.physletb.2009.01.040. arXiv:0812.3586 [hep-ex]
  63. 63.
    Kilic C, Okui T, Sundrum R (2010) Vectorlike confinement at the LHC. JHEP 1002:018. doi: 10.1007/JHEP02(2010)018. arXiv:0906.0577 [hep-ph]
  64. 64.
    Kilic C, Okui T, Sundrum R (2008) Colored resonances at the tevatron: phenomenology and discovery potential in multijets. JHEP 0807:038. doi: 10.1088/1126-6708/2008/07/038. arXiv:0802.2568 [hep-ex]
  65. 65.
    Calvet S, Fuks B, Gris P, Valery L (2013) Searching for sgluons in multitop events at a center-of-mass energy of 8 TeV. JHEP 1304:043. doi: 10.1007/JHEP04(2013)043. arXiv:1212.3360 [hep-ex]
  66. 66.
    Degrande C, Gerard J-M, Grojean C, Maltoni F, Servant G (2011) Non-resonant new physics in top pair production at hadron colliders. JHEP 1103:125. doi: 10.1007/JHEP03(2011)125. arXiv:1010.6304 [hep-ph]
  67. 67.
    Guchait M, Mahmoudi F, Sridhar K (2008) Associated production of a Kaluza-Klein excitation of a gluon with a t anti-t pair at the LHC. Phys Lett B 666:347. doi: 10.1016/j.physletb.2008.07.085. arXiv:0710.2234 [hep-ph]

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Instituto de Física de Altas EnergíasUniversitat Autónoma de BarcelonaBellaterra, BarcelonaSpain

Personalised recommendations