Advertisement

The Role of Topology in DNA Gel Electrophoresis

  • Davide MichielettoEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Topology plays a key role in the biophysics of DNA, and is intimately related to its functioning. For instance, transcription of a gene redistributes twist locally to create what is known as supercoiling, while catenanes or knots can prevent cell division, hence they need to be quickly and accurately removed by specialised enzymes known as topoisomerases. But how can one establish experimentally the topological state of a given DNA molecule? By far the most successful and widely used technique for this is gel electrophoresis (Calladine et al. 1997; Bates and Maxwell 2005). This method exploits the empirical observation that the mobility of a charged DNA molecule under an electric field and moving through a gel depends on its size, shape and topology (Bates and Maxwell 2005; Stasiak et al. 1996). Nowadays, gel electrophoresis is a ubiquitous technique (Calladine et al. 1997; Viovy 2000; Dorfman 2010), since it readily allows the separation of polymers with different physical properties and it is systematically used for DNA identification and purification (Calladine et al. 1997).

Keywords

Persistence Length Topological Interaction Entanglement Event Ring Polymer Negative Differential Mobility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adams, C.C.: The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots W. H. Freeman and Company, New York (1994)zbMATHGoogle Scholar
  2. Alon, U., Mukamel, D.: Gel electrophoresis and diffusion of ring-shaped DNA. Phys. Rev. E 55(2), 1783 (1997)ADSCrossRefGoogle Scholar
  3. Arsuaga, J., Vazquez, M., McGuirk, P., Trigueros, S., Sumners, D.W., Roca, J.: DNA knots reveal a chiral organization of DNA in phage capsids. Proc. Natl. Acad. Sci. USA 102(26), 9165 (2005)ADSCrossRefGoogle Scholar
  4. Arsuaga, J., Vázquez, M., Trigueros, S., Sumners, D., Roca, J.: Knotting probability of DNA molecules confined in restricted volumes: DNA knotting in phage capsids. Proc. Natl. Acad. Sci. USA 99(8), 5373 (2002)ADSCrossRefGoogle Scholar
  5. Baerts, P., Basu, U., Maes, C., Safaverdi, S.: Frenetic origin of negative differential response. Phys. Rev. E 88(5), 052109 (2013)ADSCrossRefGoogle Scholar
  6. Baiesi, M., Maes, C., Wynants, B.: Fluctuations and response of nonequilibrium states. Phys. Rev. Lett. 103(1), 010602 (2009)ADSCrossRefzbMATHGoogle Scholar
  7. Baiesi, M., Maes, C., Wynants, B.: The modified Sutherland-Einstein relation for diffusive non-equilibria. Proc. R. Soc. A 467(2134), 2792 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. Baiesi, M., Stella, A.L., Vanderzande, C.: Role of trapping and crowding as sources of negative differential mobility. Phys. Rev. E 92, 042121 (2015)ADSCrossRefGoogle Scholar
  9. Barkema, G., Marko, J., Widom, B.: Electrophoresis of charged polymers: simulation and scaling in a lattice model of reptation. Phys. Rev. E 49(6), 5303–5309 (1994)ADSCrossRefGoogle Scholar
  10. Bates, A., Maxwell, A.: DNA Topology. Oxford University Press, Oxford (2005)Google Scholar
  11. Calladine, C.R., Collis, C.M., Drew, H.R., Mott, M.R.: A study of electrophoretic mobility of DNA in agarose and polyacrylamide gels. J. Mol. Biol. 221(3), 981 (1991)CrossRefGoogle Scholar
  12. Calladine, C.R., Drew, H., Luisi, F.B., Travers, A.A.: Understanding DNA: The Molecule and How it Works. Elsevier Academic Press, London (1997)Google Scholar
  13. Cebrián, J., Kadomatsu-Hermosa, M.J., Castán, A., Martínez, V., Parra, C., Fernández-Nestosa, M.J., Schaerer, C., Martínez-Robles, M.-L., Hernández, P., Krimer, D.B., Stasiak, A., Schvartzman, J.B.: Electrophoretic mobility of supercoiled, catenated and knotted DNA molecules., Nucl. Acids Res. 3112(Ext 4232), 1 (2014)Google Scholar
  14. Cole, K.D., Åkerman, B.: The influence of agarose concentration in gels on the electrophoretic trapping of circular DNA. Separ. Sci. Technol. 38(10), 2121 (2003)CrossRefGoogle Scholar
  15. Di Stefano, M., Tubiana, L., Di Ventra, M., Micheletti, C.: Driving knots on DNA with AC/DC electric fields: topological friction and memory effects. Soft Matter 10, 6491 (2014)CrossRefGoogle Scholar
  16. Dorfman, K.D.: DNA electrophoresis in microfabricated devices. Rev. Mod. Phys. 82(4), 2903 (2010)ADSCrossRefGoogle Scholar
  17. Duke, T.: Tube model of field-inversion electrophoresis. Phys. Rev. Lett. 62(24), 2877 (1989)ADSCrossRefGoogle Scholar
  18. Galajda, P., Keymer, J., Chaikin, P., Austin, R.: A wall of funnels concentrates swimming bacteria. J. Bacteriol. 189(23), 8704 (2007)CrossRefGoogle Scholar
  19. Ghosh, P.K., Hänggi, P., Marchesoni, F., Nori, F.: Giant negative mobility of Janus particles in a corrugated channel. Phys. Rev. E 89(6), 062115 (2014)ADSCrossRefGoogle Scholar
  20. Guenet, J.M., Rochas, C.: Agarose sols and gels revisited. Macromol. Symp. 242, 65 (2006)CrossRefGoogle Scholar
  21. Katritch, V., Bednar, J., Michoud, D., Scharein, R., Dubochet, J., Stasiak, A.: Geometry and physics of knots. Nature 384, 142 (1996)ADSMathSciNetCrossRefGoogle Scholar
  22. Kusner, R., Sullivan, J.: Möbius energies for knots and links, surfaces and submanifolds. Geometric Topology (Proceedings of the 1993 Georgia International Topology Conference) AMS/IP Studies in Advanced Mathematical, pp. 570–604 (1994)Google Scholar
  23. Levene, S.D., Zimm, B.H.: Separations of open-circular DNA using pulsed-field electrophoresis. Proc. Natl. Acad. Sci. USA 84(12), 4054 (1987)ADSCrossRefGoogle Scholar
  24. Maffeo, C., Schöpflin, R., Brutzer, H., Stehr, R., Aksimentiev, A., Wedemann, G., Seidel, R.: DNA-DNA interactions in tight supercoils are described by a small effective charge density. Phys. Rev. Lett. 105(15), 158101 (2010)ADSCrossRefGoogle Scholar
  25. Mickel, S., Arena, V., Bauer, W.: Physical properties and gel electrophoresis behavior of R12-derived plasmid DNAs. Nucl. Acids Res. 4(5), 1465 (1977)CrossRefGoogle Scholar
  26. Mogilner, A., Rubinstein, B.: The physics of filopodial protrusion. Biophys. J. 89(2), 782 (2005)MathSciNetCrossRefGoogle Scholar
  27. Mohan, A., Doyle, P.: Effect of disorder on DNA electrophoresis in a microfluidic array of obstacles. Phys. Rev. E 76(4), 040903 (2007a)ADSCrossRefGoogle Scholar
  28. Mohan, A., Doyle, P.S.: Stochastic modeling and simulation of DNA electrophoretic separation in a microfluidic obstacle array. Macromolecules 40(24), 8794 (2007b)ADSCrossRefGoogle Scholar
  29. Olavarrieta, L., Martínez-Robles, M.L., Sogo, J.M., Stasiak, A., Hernández, P., Krimer, D.B., Schvartzman, J.B.: Supercoiling, knotting and replication fork reversal in partially replicated plasmids. Nucl. Acids Res. 30(3), 656 (2002)CrossRefGoogle Scholar
  30. Pernodet, N., Maaloum, M., Tinland, B.: Pore size of agarose gels by atomic force microscopy. Electrophoresis 18, 55 (1997)CrossRefGoogle Scholar
  31. Piili, J., Marenduzzo, D., Kaski, K., Linna, R.P.: Sedimentation of knotted polymers. Phys. Rev. E 87(1), 012728 (2013)ADSCrossRefGoogle Scholar
  32. Rahong, S., Yasui, T., Yanagida, T., Nagashima, K., Kanai, M., Klamchuen, A., Meng, G., He, Y., Zhuge, F., Kaji, N., Kawai, T., Baba, Y.: Ultrafast and wide range analysis of DNA molecules using rigid network structure of solid nanowires. Sci. Rep. 4, 5252 (2014)ADSCrossRefGoogle Scholar
  33. Rolfsen, D.: Knots and links. AMS Chelsea Publishing, Providence, Rhode Island (2003)zbMATHGoogle Scholar
  34. Rubinstein, M.: Discretized model of entangled-polymer dynamics. Phys. Rev. Lett. 59(17), 1946 (1987)ADSCrossRefGoogle Scholar
  35. Stasiak, A., Katritch, V., Bednar, J., Michoud, D., Dubochet, J.: Electrophoretic mobility of DNA knots. Nature 384, 122 (1996)ADSMathSciNetCrossRefGoogle Scholar
  36. Stellwagen, N.C., Stellwagen, E.: Effect of the matrix on DNA electrophoretic mobility. J. Chromatogr. 1216(10), 1917 (2009)CrossRefGoogle Scholar
  37. Sugiyama, J., Rochas, C., Turquois, T., Taravel, F., Chanzy, H.: Direct imaging of polysaccharide aggregates in frozen aqueous dilute systems. Carbohydr. Polym. 23(4), 261 (1994)CrossRefGoogle Scholar
  38. Trigueros, S., Arsuaga, J., Vazquez, M.E., Sumners, D., Roca, J.: Novel display of knotted DNA molecules by two-dimensional gel electrophoresis. Nucl. Acids Res. 29(13), E67 (2001)CrossRefGoogle Scholar
  39. Trigueros, S., Roca, J.: Production of highly knotted DNA by means of cosmid circularization inside phage capsids. BMC Biotechnol. 7, 94 (2007)CrossRefGoogle Scholar
  40. Viovy, J.: Electrophoresis of DNA and other polyelectrolytes: physical mechanisms. Rev. Mod. Phys. 72(3), 813 (2000)ADSCrossRefGoogle Scholar
  41. Viovy, J., Duke, T.: DNA electrophoresis in polymer solutions: Ogston sieving, reptation and constraint release. Electrophoresis 14, 322 (1993)CrossRefGoogle Scholar
  42. Weber, C., Carlen, M., Dietler, G., Rawdon, E.J., Stasiak, A.: Sedimentation of macroscopic rigid knots and its relation to gel electrophoretic mobility of DNA knots. Sci. Rep. 3, 1091 (2013)ADSCrossRefGoogle Scholar
  43. Weber, C., Stasiak, A., De, : Los Rios, P., Dietler, G.: Simulations of electrophoretic collisions of DNA knots with gel obstacles. J. Phys.: Condens. Matter 18(14), S161 (2006a)Google Scholar
  44. Weber, C., Stasiak, A., De, : Los Rios, P., Dietler, G.: Numerical simulation of gel electrophoresis of DNA knots in weak and strong electric fields. Biophys. J. 90(9), 3100 (2006b)Google Scholar
  45. Whytock, S., Finch, J.: The substructure of agarose gels as prepared for electrophoresis. Biopolymers 31(9), 1025 (1991)CrossRefGoogle Scholar
  46. Zia, R.K.P., Praestgaard, E.L., Mouritsen, O.G.: Getting more from pushing less: negative specific heat and conductivity in nonequilibrium steady states. Am. J. Phys. 70(4), 384 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Physics and AstronomyUniversity of EdinburghEdinburghUK

Personalised recommendations