A Bio-Physical Model for the Kinetoplast DNA

  • Davide MichielettoEmail author
Part of the Springer Theses book series (Springer Theses)


The Kinetoplast DNA (or KDNA) (Simpson 1967) is one of the most complex and singular forms of DNA in nature. It is uniquely found in the mitochondrion of a group of unicellular eukaryotic organisms of the class Kinetoplastida. Some of these organisms have been studied since the late ’60s because they are responsible for several serious diseases such as sleeping sickness and leishmaniasis (Young and Morales 1987), and are among the earliest diverging eukaryotic organisms containing a mitochondrion (Avliyakulov et al. 2004).


Genetic Material Replication Time Attachment Rate Stable Fixed Point Progeny Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Avliyakulov, N.K., Lukes, J., Ray, D.S.: Mitochondrial histone-like DNA-binding proteins are essential for normal cell growth and mitochondrial function in crithidia fasciculata. Eukaryot. Cell 3(2), 518 (2004)CrossRefGoogle Scholar
  2. Brown, P.O., Cozzarelli, N.R.: Catenation and knotting of duplex DNA by type 1 topoisomerases: a mechanistic parallel with type 2 topoisomerases. Proc. Natl. Acad. Sci. USA 78(2), 843 (1981)ADSCrossRefGoogle Scholar
  3. Chen, J., Englund, P.T., Cozzarelli, N.R.: Changes in network topology during the replication of kinetoplast DNA. EMBO J. 14(24), 6339 (1995a)Google Scholar
  4. Chen, J., Rauch, C.A., White, J.H., Englund, P.T., Cozzarelli, N.R.: The topology of the kinetoplast DNA network. Cell 80(1), 61 (1995b)Google Scholar
  5. de Gennes, P.G.: Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca (1979)Google Scholar
  6. de Souza, W., Attias, M., Rodrigues, J.C.F.: Particularities of mitochondrial structure in parasitic protists (Apicomplexa and Kinetoplastida). Int. J. Biochem. Cell. B. 41(10), 2069 (2009)CrossRefGoogle Scholar
  7. Diao, Y., Hinson, K., Kaplan, R., Vazquez, M., Arsuaga, J.: The effects of density on the topological structure of the mitochondrial DNA from trypanosomes. J. Math. Biol. 64, 1087 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. Dignam, J., Lebovitz, R., Roeder, R.: Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1(5), 1475 (1983)CrossRefGoogle Scholar
  9. Docampo, R., Ulrich, P., Moreno, S.N.J.: Evolution of acidocalcisomes and their role in polyphosphate storage and osmoregulation in eukaryotic microbes. Phil. Trans. R. Soc. B 365(February), 775 (2010)CrossRefGoogle Scholar
  10. Drew, M.E., Englund, P.T.: Intramitochondrial location and dynamics of Crithidia fasciculata kinetoplast minicircle replication intermediates. J. Cell Biol. 153(4), 735 (2001)CrossRefGoogle Scholar
  11. Duplantier, B., Jannink, G., Sikorav, J.L.: Anaphase chromatid motion: involvement of type II DNA topoisomerases. Biophys. J. 69(4), 1596 (1995)ADSCrossRefGoogle Scholar
  12. Englund, P.: The replication of kinetoplast DNA networks in Crithidia fasciculata. Cell 14, 157 (1978)CrossRefGoogle Scholar
  13. Englund, P.: Free minicircles of kinetoplast DNA in Crithidia fasciculata. J. Biol. Chem. 254, 4895–4900 (1979)Google Scholar
  14. Gluenz, E., Shaw, M.K., Gull, K.: Structural asymmetry and discrete nucleic acid subdomains in the Trypanosoma brucei kinetoplast. Mol. Microbiol. 64, 1529 (2007)CrossRefGoogle Scholar
  15. Hines, J.C., Ray, D.S.: The Crithidia fasciculata KAP 1 gene encodes a highly basic protein associated with kinetoplast DNA 1. Mol. Biochem. Parasit. 94, 41 (1998)CrossRefGoogle Scholar
  16. Hsieh, T., Brutlag, D.: ATP-dependent DNA topoisomerase from D. melanogaster reversibly catenates duplex DNA rings. Cell 21, 115 (1980)CrossRefGoogle Scholar
  17. Jensen, R.E., Englund, P.T.: Network news: the replication of kinetoplast DNA. Annu. Rev. Microbiol. 66, 473 (2012)CrossRefGoogle Scholar
  18. Kellenberger, E., Carlemalm, E., Sechaud, J., Ryter, A., Haller, G.: Considerations on the condensation and the degree of compactness in non-eukaryotic dna-containing plasmas. In: Gualerzi, C.O., Pon, C.L. (eds.) Bacterial Chromatin, pp. 11–25. Springer, Berlin (1986)Google Scholar
  19. Kitchin, P., Klein, V., Fein, B., Englund, P.: Gapped Minicircles. A novel replication intermediate of kinetoplast DNA. J. Biol. Chem. 259(24), 15532 (1984)Google Scholar
  20. Krasnow, M., Cozzarelli, N.: Catenation of DNA rings by topoisomerases. J. Biol. Chem. 257, 2687 (1982)Google Scholar
  21. Kreuzer, K., Cozzarelli, N.: Formation and resolution of DNA catenanes by DNA gyrase. Cell 20(May), 245 (1980)CrossRefGoogle Scholar
  22. Lai, D.-H., Hashimi, H., Lun, Z.-R., Ayala, F.J., Lukes, J.: Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA : Trypanosoma equiperdum and Trypanosoma evansi are petite mutants of T. brucei. Proc. Natl. Acad. Sci. USA 105(6), 1999 (2008)ADSCrossRefGoogle Scholar
  23. Liu, B., Liu, Y., Motyka, S.A., Agbo, E.E.C., Englund, P.T.: Fellowship of the rings: the replication of kinetoplast DNA. Trends Parasitol. 21(8), 363 (2005)CrossRefGoogle Scholar
  24. Lukes, J., Hashimi, H., Zíková, A.: Unexplained complexity of the mitochondrial genome and transcriptome in kinetoplastid flagellates. Curr. Genet. 48(5), 277 (2005)CrossRefGoogle Scholar
  25. Lukeš, J., Hines, J., Evans, C., Avliyakulov, N.K., Prabhu, V.P., Chen, J., Ray, D.S.: Disruption of the Crithidia fasciculata KAP1 gene results in structural rearrangement of the kinetoplast disc. Mol. Biochem. Parasitol. 117, 179 (2001)CrossRefGoogle Scholar
  26. Lukeš, J., Guilbride, D., Votýpka, J.: Kinetoplast DNA network: evolution of an improbable structure. Eukaryot. Cell 1(4), 495 (2002)CrossRefGoogle Scholar
  27. Maxwell, A., Gellert, M.: The DNA dependence of the ATPase activity of DNA gyrase. J. Biol. Chem. 259(23), 14472 (1984)Google Scholar
  28. Melendy, T., Sheline, C., Ray, D.S.: Localization of a type II DNA topoisomerase to two sites at the periphery of the kinetoplast DNA of Crithidia fasciculata. Cell 55, 1083 (1988)CrossRefGoogle Scholar
  29. Michieletto, D., Marenduzzo, D., Orlandini, E.: Is the kinetoplast DNA a percolating network of linked rings at its critical point? Phys. Biol. 12, 036001 (2015)ADSCrossRefGoogle Scholar
  30. Morris, J.C., Drew, M.E., Klingbeil, M.M., Motyka, S.A., Saxowsky, T.T., Wang, Z., Englund, P.T.: Replication of kinetoplast DNA: an update for the new millennium. Int. J. Parasitol. 31(5–6), 453 (2001)CrossRefGoogle Scholar
  31. Ogbadoyi, E., Robinson, D., Gull, K.: A high-order trans-membrane structural linkage is responsible for mitochondrial genome positioning and segregation by flagellar basal bodies in trypanosomes. Mol. Biol. Cell 14(May), 1769 (2003)CrossRefGoogle Scholar
  32. Pérez-Morga, D., Englund, P.: The structure of replicating kinetoplast DNA network. J. Cell. Biol. 123(5), 4 (1993a)Google Scholar
  33. Pérez-Morga, D.L., Englund, P.T.: The attachment of minicircles to kinetoplast DNA networks during replication. Cell 74(4), 703 (1993b)Google Scholar
  34. Rauch, C.A., Pérez-Morga, D., Cozzarelli, N.R., Englund, P.T.: The absence of supercoiling in kinetoplast DNA minicircles. EMBO J. 12(2), 403 (1993)Google Scholar
  35. Renger, H., Wolstenholme, D.: Kinetoplast and other satellite DNAs of kinetoplastic and dyskinetoplastic strains of Trypanosoma. J. Cell. Biol. 50, 533 (1971)CrossRefGoogle Scholar
  36. Renger, H., Wolstenholme, D.: The form and structure of kinetoplast DNA of Crithidia. J. Cell. Biol. 5, 346 (1972)CrossRefGoogle Scholar
  37. Rybenkov, V.V., Vologodskii, A.V., Cozzarelli, N.R.: The effect of ionic conditions on the conformations of supercoiled DNA. II. Equilibrium catenation. J. Mol. Biol. 267(2), 312 (1997)CrossRefGoogle Scholar
  38. Schwartz, J.J., Quake, S.R.: Single molecule measurement of the ‘speed limit’ of DNA polymerase. Proc. Natl. Acad. Sci. USA 107(3), 1254 (2009)Google Scholar
  39. Shapiro, T., Englund, P.: The structure and replication of kinetoplast DNA. Annu. Rev. Microbiol. 49, 117 (1995)CrossRefGoogle Scholar
  40. Shlomai, J.: The assembly of kinetoplast DNA. Parasitol. Today 10(9), 341 (1994)CrossRefGoogle Scholar
  41. Shlomai, J., Linial, M.: A nicking enzyme from Trypanosomatids which specifically affects the topological linking of duplex DNA circles. J. Biol. Chem. 261(34), 16219 (1986)Google Scholar
  42. Shlomai, J., Zadok, A.: Reversible decatenation of kinetoplast DNA by a DNA topoisomerase from trypanosomatids. Nucleic Acids Res. 11(12), 4019 (1983)CrossRefGoogle Scholar
  43. Silver, L.E., Torri, A.F., Hajduk, S.L.: Organized packaging of kinetoplast DNA networks. Cell 47(4), 537 (1986)CrossRefGoogle Scholar
  44. Simpson, L.P.: Morphogenesis and the function of the kinetoplast in “Leishmania”. Atlas de Symposia sobre a Biota Amazonica (Pathologia), 6, 231 (1967)Google Scholar
  45. Taniguchi, Y., Choi, P.J., Li, G.-W., Chen, H., Babu, M., Hearn, J., Emili, A., Xie, X.S.: Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329(5991), 533 (2010)Google Scholar
  46. Wang, Z., Englund, P.: RNA interference of a trypanosome topoisomerase II causes progressive loss of mitochondrial DNA. EMBO J. 20(17) (2001)Google Scholar
  47. Wang, Z., Morris, J.C., Drew, M.E., Englund, P.T.: Inhibition of Trypanosoma brucei gene expression by RNA interference using an integratable vector with opposing T7 promoters. J. Biol. Chem. 275(51), 40174 (2000)CrossRefGoogle Scholar
  48. White, J.H., Millett, K.C., Cozzarelli, N.R.: Description of the topological entanglement of DNA catenanes and knots by a powerful method involving strand passage and recombination. J. Mol. Biol. 197(3), 585 (1987)CrossRefGoogle Scholar
  49. Wickiser, J.K., Winkler, W.C., Breaker, R.R., Crothers, D.M.: The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. Mol. Cell 18(1), 49 (2005)CrossRefGoogle Scholar
  50. Xu, C.W., Ray, D.S.: Isolation of proteins associated with kinetoplast DNA networks in vivo. Proc. Natl. Acad. Sci. USA 90, 1786 (1993)ADSCrossRefGoogle Scholar
  51. Xu, C.W., Hines, J.C., Engel, M.L., Russell, D.G., Ray, D.S.: Nucleus-encoded histone H1-like proteins are associated with kinetoplast DNA in the trypanosomatid Crithidia fasciculata. Mol. Cell. Biol. 16(2), 564 (1996)CrossRefGoogle Scholar
  52. Young, D., Morales, A.: Isolations of Leishmania braziliensis (Kinetoplastida: Trypanosomatidae) from cryopreserved colombian sand flies (Diptera: Psychodidae). J. Med. Entomol. 24, 587 (1987)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Physics and AstronomyUniversity of EdinburghEdinburghUK

Personalised recommendations