Advertisement

Predicting the Behaviour of Rings in Solution

  • Davide MichielettoEmail author
Chapter
  • 259 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Polymeric systems offer an incredible richness of behaviour. Depending on the solution concentration, its temperature or its quality and the polymers length, or topology, every system made of polymers can be categorised into a “universality class”, within which it finds a physical characterisation (scaling) of its macroscopic properties.

Keywords

Linear Polymer Universality Class Cayley Tree Dense Solution Polymer Coil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aichele, M., Baschnagel, J.: Glassy dynamics of simulated polymer melts: coherent scattering and van Hove correlation functions. Eur. Phys. J. E 5(2), 229 (2001)CrossRefGoogle Scholar
  2. Berthier, L., Biroli, G.: Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83(2), 587 (2011)ADSCrossRefGoogle Scholar
  3. Brás, A., Gooßen, S., Krutyeva, M.: Compact structure and non-Gaussian dynamics of ring polymer melts. Soft Matter 10, 3649 (2014)ADSCrossRefGoogle Scholar
  4. Cates, M., Deutsch, J.: Conjectures on the statistics of ring polymers. J. Phys. Paris 47, 2121 (1986)CrossRefGoogle Scholar
  5. Cremer, T., Cremer, C.: Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2(4), 292 (2001)CrossRefGoogle Scholar
  6. Daoud, M., Joanny, J.: Conformation of branched polymers. J. de phys. 42(10), 1359 (1981)CrossRefGoogle Scholar
  7. de Gennes, P.G.: Scaling concepts in polymer physics, Cornell University Press (1979)Google Scholar
  8. de Gennes, P.G.: Coherent scattering by one reptating chain. J. Phys. (Paris) 42(5), 735 (1981)CrossRefGoogle Scholar
  9. Doi, M., Edwards, S.: The Theory of Polymer Dynamics, Oxford University Press, Oxford (1988)Google Scholar
  10. Doi, Y., Matsubara, K., Ohta, Y., Nakano, T., Kawaguchi, D., Takahashi, Y., Takano, A., Matsushita, Y.: Melt Rheology of Ring Polystyrenes with Ultrahigh Purity. Macromolecules 48(9), 3140 (2015)ADSCrossRefGoogle Scholar
  11. Edwards, S.: Statistical mechanics with topological constraints: I. Proc. Phys. Soc. 91, 513 (1967)ADSCrossRefzbMATHGoogle Scholar
  12. Edwards, S.: Statistical mechanics with topological constraints: II. J. Phys. A: Math. Gen. 1, 15 (1968)ADSCrossRefzbMATHGoogle Scholar
  13. Flory, P.J.: Principles of polymer chemistry, Cornell University Press. Ithaca, New York (1953)Google Scholar
  14. Frey, S., Weysser, F., Meyer, H., Farago, J., Fuchs, M., Baschnagel, J.: Simulated glass-forming polymer melts: Dynamic scattering functions, chain length effects, and mode-coupling theory analysis. Eur. Phys. J. E 38(11), 1 (2015)Google Scholar
  15. Gooßen, S., Brás, A.R., Krutyeva, M., Sharp, M., Falus, P., Feoktystov, A., Gasser, U., Wischnewski, A., Richter, D.: Molecular Scale Dynamics of Large Ring Polymers. Phys. Rev. Lett. 113, 169302 (2014)CrossRefGoogle Scholar
  16. Grosberg, A.: Annealed lattice animal model and Flory theory for the melt of non-concatenated rings: towards the physics of crumpling. Soft Matter 10, 560 (2014)ADSCrossRefGoogle Scholar
  17. Grosberg, A.Y., Rabin, Y., Havlin, S., Neer, A.: Crumpled globule model of the three-dimensional structure of DNA. Europhys. Lett. 23(5), 373 (1993)ADSCrossRefGoogle Scholar
  18. Gutin, A., Grosberg, A., Shakhnovich, E.: Polymers with annealed and quenched branchings belong to different universality classes. Macromolecules 26(5), 1293 (1993)ADSMathSciNetCrossRefGoogle Scholar
  19. Halverson, J.D., Lee, W.B., Grest, G.S., Grosberg, A.Y., Kremer, K.: Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. I. Statics. J. Chem. Phys. 134(20), 204904 (2011a)ADSCrossRefGoogle Scholar
  20. Halverson, J.D., Lee, W.B., Grest, G.S., Grosberg, A.Y., Kremer, K.: Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. II. Dynamics. J. Chem. Phys. 134(20), 204905 (2011b)ADSCrossRefGoogle Scholar
  21. Halverson, J.D., Kremer, K., Grosberg, A.Y.: Comparing the results of lattice and off-lattice simulations for the melt of nonconcatenated rings. J. Phys. A 46(6), 065002 (2013)ADSCrossRefGoogle Scholar
  22. Halverson, J.D., Smrek, J., Kremer, K., Grosberg, A.: From a melt of rings to chromosome territories: the role of topological constraints in genome folding. Rep. Prog. Phys. 77, 022601 (2014)ADSMathSciNetCrossRefGoogle Scholar
  23. Isaacson, J., Lubensky, T.C.: Flory exponents for generalized polymer problems. J. Phys. 41, 469 (1980)Google Scholar
  24. Iyer, B.V.S., Arya, G.: Lattice animal model of chromosome organization. Phys. Rev. E 86(1), 011911 (2012)ADSCrossRefGoogle Scholar
  25. Kapnistos, M., Lang, M., Vlassopoulos, D., Pyckhout-Hintzen, W., Richter, D., Cho, D., Chang, T., Rubinstein, M.: Unexpected power-law stress relaxation of entangled ring polymers. Nat. Mater. 7(12), 997 (2008)ADSCrossRefGoogle Scholar
  26. Klein, J.: Dynamics of entangled linear, branched, and cyclic polymers. Macromolecules 118(33), 105 (1986)ADSCrossRefGoogle Scholar
  27. Kremer, K., Grest, G.S.: Dynamics of entangled linear polymer melts: A molecular-dynamics simulation. J. Chem. Phys. 92(8), 5057 (1990)ADSCrossRefGoogle Scholar
  28. Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., Sandstrom, R., Bernstein, B., Bender, M.A., Groudine, M., Gnirke, A., Stamatoyannopoulos, J., Mirny, L.A., Lander, E.S., Dekker, J.: Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950), 289 (2009)ADSCrossRefGoogle Scholar
  29. Lubensky, T., Isaacson, J.: Statistics of lattice animals and dilute branched polymers. Phys. Rev. A 20(5), 2130 (1979)ADSCrossRefGoogle Scholar
  30. Milner, S., Newhall, J.: Stress Relaxation in Entangled Melts of Unlinked Ring Polymers. Phys. Rev. Lett. 105(20), 208302 (2010)ADSCrossRefGoogle Scholar
  31. Mirny, L.A.: The fractal globule as a model of chromatin architecture in the cell. Chromosome Res. 19(1), 37 (2011)CrossRefGoogle Scholar
  32. Muller, M., Wittmer, J., Cates, M.: Topological effects in ring polymers. II. Influence Of persistence length. Phys. Rev. E 61(4), 4078 (2000)ADSCrossRefGoogle Scholar
  33. Müller, M., Wittmer, J.P., Cates, M.E.: Topological effects in ring polymers: A computer simulation study. Phys. Rev. E 53(5), 5063 (1996)ADSCrossRefGoogle Scholar
  34. Obukhov, S., Rubinstein, M.: Dynamics of a ring polymer in a gel. Phys. Rev. Lett. 73(9), 1263 (1994)ADSCrossRefGoogle Scholar
  35. Parisi, G., Sourlas, N.: Critical behavior of branched polymers and the Lee-Yang edge singularity. Phys. Rev. Lett. 46(14), 871 (1981)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. Pasquino, R., Vasilakopoulos, T., Jeong, C., Lee, H., Rogers, S., Sakellariou, G., Allgaier, J., Takano, A., Bras, A., Chang, T., Goossen, S., Pyckhout-Hintzen, W., Wischnewski, A., Hadjichristidis, N., Richter, D., Rubinstein, M., Vlassopoulos, D.: Viscosity of Ring Polymer Melts. ACS Macro Lett. 2, 874 (2013)CrossRefGoogle Scholar
  37. Raphael, E., Gay, C., de Gennes, P.G.: Progressive construction of an Olympic gel. J. Stat. Phys. 89, 111 (1997)ADSCrossRefGoogle Scholar
  38. Rosa, A., Everaers, R.: Structure and dynamics of interphase chromosomes. PLoS Comput. Biol. 4(8), 1 (2008)MathSciNetCrossRefGoogle Scholar
  39. Rosa, A., Everaers, R.: Ring polymers in the melt state: The physics of crumpling. Phys. Rev. Lett. 112, 118302 (2014)ADSCrossRefGoogle Scholar
  40. Rubinstein, M.: Dynamics of ring polymers in the presence of fixed obstacles. Phys. Rev. Lett. 57(24), 3023 (1986)ADSCrossRefGoogle Scholar
  41. Rubinstein, M., Colby, H.R.: Polymer Physics, Oxford University Press, Oxford (2003)Google Scholar
  42. Smrek, J., Grosberg, A.Y.: Understanding the dynamics of rings in the melt in terms of annealed tree model. J. Phys.: Condens. Matter 27, 064117 (2015)ADSGoogle Scholar
  43. Zhang, Y., McCord, R.P., Ho, Y.-J., Lajoie, B.R., Hildebrand, D.G., Simon, A.C., Becker, M.S., Alt, F.W., Dekker, J.: Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell 148(5), 908 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Physics and AstronomyUniversity of EdinburghEdinburghUK

Personalised recommendations