• Davide MichielettoEmail author
Part of the Springer Theses book series (Springer Theses)


Polymers are ubiquitous in Nature. They consist of a collection of many simple units (from the Greek word for “many” poly and for “unit” mer) and because of this, they are among the most simple examples of physical cooperativity. Polymers are made of repetitive patterns which make them easy to design, while their length can reach the million of units. Polymers can be thought of as very early examples of self-replicating objects: Given a single unit (a monomer) and enough substrate to form more units, a long sequence of monomers is bound to appear and eventually this can even break up forming many copies of itself. Nature has exploited this self-replicating ability by giving polymers a central role in Biology.


Topological State Dense Solution Topological Interaction Ring Polymer Comb Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams, C.C.: The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. W H Freeman and Company, New York (1994)Google Scholar
  2. Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M.: Molecular Biology of the Cell. Taylor & Francis, New York (2014)Google Scholar
  3. Arsuaga, J., Vázquez, M., Trigueros, S., Sumners, D., Roca, J.: Knotting probability of DNA molecules confined in restricted volumes: DNA knotting in phage capsids. Proc. Natl. Acad. Sci. USA 99(8), 5373 (2002)ADSCrossRefGoogle Scholar
  4. Bates, A., Maxwell, A.: DNA topology, Oxford University Press, Oxford (2005)Google Scholar
  5. Berger, J., Gamblin, S., Harrison, S., Wang, J.: Structure and mechanism of DNA topoisomerase II. Nature 379, 225 (1996)ADSCrossRefGoogle Scholar
  6. Borst, P.: Why kinetoplast DNA networks? Trends Genet. 7 (1991)Google Scholar
  7. Calladine, C. R., Drew, H., Luisi, F. B., and Travers, A. A.: Understanding DNA: The Molecule and How it Works, Elsevier Academic Press, New York (1997)Google Scholar
  8. Cavalli, G., Misteli, T.: Functional implications of genome topology. Nat. Struct. Mol. Biol. 20(3), 290 (2013)CrossRefGoogle Scholar
  9. Chen, J., Rauch, C.A., White, J.H., Englund, P.T., Cozzarelli, N.R.: The topology of the kinetoplast DNA network. Cell 80(1), 61 (1995)CrossRefGoogle Scholar
  10. Cremer, T., Cremer, C.: Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2(4), 292 (2001)CrossRefGoogle Scholar
  11. de Gennes, P.G.: Reptation of a Polymer Chain in the Presence of Fixed Obstacles. J. Chem. Phys. 55(2), 572 (1971)ADSCrossRefGoogle Scholar
  12. Doi, M., Edwards, S.: The Theory of Polymer Dynamics, Oxford University Press, Oxford (1988)Google Scholar
  13. Doi, Y., Matsubara, K., Ohta, Y., Nakano, T., Kawaguchi, D., Takahashi, Y., Takano, A., Matsushita, Y.: Melt Rheology of Ring Polystyrenes with Ultrahigh Purity. Macromolecules 48(9), 3140 (2015)ADSCrossRefGoogle Scholar
  14. Fairlamb, A.H., Weislogel, P.O., Hoeijmakers, J.H., Borst, P.: Isolation and characterization of kinetoplast DNA from bloodstream form of Trypanosoma brucei. J. Cell Biol. 76(2), 293 (1978)CrossRefGoogle Scholar
  15. Grosberg, A.: Annealed lattice animal model and Flory theory for the melt of non-concatenated rings: towards the physics of crumpling. Soft Matter 10, 560 (2014)ADSCrossRefGoogle Scholar
  16. Grosberg, A.Y., Rabin, Y., Havlin, S., Neer, A.: Crumpled globule model of the three-dimensional structure of DNA. Europhys. Lett. 23(5), 373 (1993)ADSCrossRefGoogle Scholar
  17. Halverson, J.D., Lee, W.B., Grest, G.S., Grosberg, A.Y., Kremer, K.: Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. I. Statics. J. Chem. Phys. 134(20), 204904 (2011a)Google Scholar
  18. Halverson, J.D., Lee, W.B., Grest, G.S., Grosberg, A.Y., Kremer, K.: Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. II. Dynamics. J. Chem. Phys. 134(20), 204905 (2011b)Google Scholar
  19. Halverson, J.D., Smrek, J., Kremer, K., Grosberg, A.: From a melt of rings to chromosome territories: the role of topological constraints in genome folding. Rep. Prog. Phys. 77, 022601 (2014)ADSMathSciNetCrossRefGoogle Scholar
  20. Hosler, D., Burkett, S.L., Tarkanian, M.J.: Prehistoric Polymers: Rubber Processing in Ancient Mesoamerica. Science 284(June), 1988 (1999)CrossRefGoogle Scholar
  21. Hurst, L.D., Dawkins, R.: Life in a test tube. Nature 357, 198 (1992)ADSCrossRefGoogle Scholar
  22. Jensen, R.E., Englund, P.T.: Network news: the replication of kinetoplast DNA. Annu. Rev. Microbiol. 66, 473 (2012)CrossRefGoogle Scholar
  23. Kapnistos, M., Lang, M., Vlassopoulos, D., Pyckhout-Hintzen, W., Richter, D., Cho, D., Chang, T., Rubinstein, M.: Unexpected power-law stress relaxation of entangled ring polymers. Nat. Mater. 7(12), 997 (2008)ADSCrossRefGoogle Scholar
  24. Liu, L., Perkocha, L., Calendar, R., Wang, J.C.: Knotted DNA from bacteriophage capsids. Proc. Natl. Acad. Sci. USA 78(9), 5498 (1981)ADSCrossRefGoogle Scholar
  25. Liu, L.F., Depew, R.E., Wang, J.C.: Knotted single-stranded DNA rings: A novel topological isomer of circular single-stranded DNA formed by treatment with Escherichia coli \(\omega \) protein. J. Mol. Biol. 106, 439 (1976)CrossRefGoogle Scholar
  26. Lo, W.-C., Turner, M.S.: The topological glass in ring polymers. Europhys. Lett. 102(5), 58005 (2013)ADSCrossRefGoogle Scholar
  27. Marini, B., Kertesz-Farkas, A., Ali, H., Lucic, B., Lisek, K., Manganaro, L., Pongor, S., Luzzati, R., Recchia, A., Mavilio, F., Giacca, M., Lusic, M.: Nuclear architecture dictates HIV-1 integration site selection. Nature 521(7551), 227 (2015)ADSCrossRefGoogle Scholar
  28. McLeish, T.: Polymers without beginning or end. Science 297(5589), 2005 (2002)CrossRefGoogle Scholar
  29. McLeish, T.C.B.: Floored by the rings. Nature 7, 933 (2008)CrossRefGoogle Scholar
  30. Mirny, L.A.: The fractal globule as a model of chromatin architecture in the cell. Chromosome Res. 19(1), 37 (2011)CrossRefGoogle Scholar
  31. Olavarrieta, L., Martínez-Robles, M.L., Sogo, J.M., Stasiak, A., Hernández, P., Krimer, D.B., Schvartzman, J.B.: Supercoiling, knotting and replication fork reversal in partially replicated plasmids. Nucleic Acids Res. 30(3), 656 (2002)CrossRefGoogle Scholar
  32. Pasquino, R., Vasilakopoulos, T., Jeong, C., Lee, H., Rogers, S., Sakellariou, G., Allgaier, J., Takano, A., Bras, A., Chang, T., Goossen, S., Pyckhout-Hintzen, W., Wischnewski, A., Hadjichristidis, N., Richter, D., Rubinstein, M., Vlassopoulos, D.: Viscosity of Ring Polymer Melts. ACS Macro Lett. 2, 874 (2013)CrossRefGoogle Scholar
  33. Rosa, A., Everaers, R.: Structure and dynamics of interphase chromosomes. PLoS Comput. Biol. 4(8), 1 (2008)MathSciNetCrossRefGoogle Scholar
  34. Rosa, A., Everaers, R.: Ring polymers in the melt state: The physics of crumpling. Phys. Rev. Lett. 112, 118302 (2014)ADSCrossRefGoogle Scholar
  35. Staudinger, H.: Über polymerisation. Berichte der deutschen chemischen Gesellschaft (A and B Series) 53(6), 1073 (1920)CrossRefGoogle Scholar
  36. Trigueros, S., Arsuaga, J., Vazquez, M.E., Sumners, D., Roca, J.: Novel display of knotted DNA molecules by two-dimensional gel electrophoresis. Nucleic Acids Res. 29(13), E67 (2001)CrossRefGoogle Scholar
  37. Vettorel, T., Grosberg, A.Y., Kremer, K.: Statistics of polymer rings in the melt: a numerical simulation study. Phys. Biol. 6(2), 025013 (2009)ADSCrossRefGoogle Scholar
  38. Viovy, J.: Constraint release in the slip-link model and the viscoelastic properties of polymers. J. Phys. 46, 847 (1985)CrossRefGoogle Scholar
  39. Viovy, J.: Electrophoresis of DNA and other polyelectrolytes: Physical mechanisms. Rev. Mod. Phys. 72(3), 813 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Physics and AstronomyUniversity of EdinburghEdinburghUK

Personalised recommendations