Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 358 Accesses

Abstract

Polymers are ubiquitous in Nature. They consist of a collection of many simple units (from the Greek word for “many” poly and for “unit” mer) and because of this, they are among the most simple examples of physical cooperativity. Polymers are made of repetitive patterns which make them easy to design, while their length can reach the million of units. Polymers can be thought of as very early examples of self-replicating objects: Given a single unit (a monomer) and enough substrate to form more units, a long sequence of monomers is bound to appear and eventually this can even break up forming many copies of itself. Nature has exploited this self-replicating ability by giving polymers a central role in Biology.

Io stimo piú il trovar un vero, benché di cosa leggiera, che’l disputar lungamente delle massime questioni senza conseguir veritá nissuna.

G. Galilei

I prefer finding something true, although of small importance, rather than keep debating on the major issues failing to achieve any truth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, C.C.: The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. W H Freeman and Company, New York (1994)

    Google Scholar 

  • Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M.: Molecular Biology of the Cell. Taylor & Francis, New York (2014)

    Google Scholar 

  • Arsuaga, J., Vázquez, M., Trigueros, S., Sumners, D., Roca, J.: Knotting probability of DNA molecules confined in restricted volumes: DNA knotting in phage capsids. Proc. Natl. Acad. Sci. USA 99(8), 5373 (2002)

    Article  ADS  Google Scholar 

  • Bates, A., Maxwell, A.: DNA topology, Oxford University Press, Oxford (2005)

    Google Scholar 

  • Berger, J., Gamblin, S., Harrison, S., Wang, J.: Structure and mechanism of DNA topoisomerase II. Nature 379, 225 (1996)

    Article  ADS  Google Scholar 

  • Borst, P.: Why kinetoplast DNA networks? Trends Genet. 7 (1991)

    Google Scholar 

  • Calladine, C. R., Drew, H., Luisi, F. B., and Travers, A. A.: Understanding DNA: The Molecule and How it Works, Elsevier Academic Press, New York (1997)

    Google Scholar 

  • Cavalli, G., Misteli, T.: Functional implications of genome topology. Nat. Struct. Mol. Biol. 20(3), 290 (2013)

    Article  Google Scholar 

  • Chen, J., Rauch, C.A., White, J.H., Englund, P.T., Cozzarelli, N.R.: The topology of the kinetoplast DNA network. Cell 80(1), 61 (1995)

    Article  Google Scholar 

  • Cremer, T., Cremer, C.: Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2(4), 292 (2001)

    Article  Google Scholar 

  • de Gennes, P.G.: Reptation of a Polymer Chain in the Presence of Fixed Obstacles. J. Chem. Phys. 55(2), 572 (1971)

    Article  ADS  Google Scholar 

  • Doi, M., Edwards, S.: The Theory of Polymer Dynamics, Oxford University Press, Oxford (1988)

    Google Scholar 

  • Doi, Y., Matsubara, K., Ohta, Y., Nakano, T., Kawaguchi, D., Takahashi, Y., Takano, A., Matsushita, Y.: Melt Rheology of Ring Polystyrenes with Ultrahigh Purity. Macromolecules 48(9), 3140 (2015)

    Article  ADS  Google Scholar 

  • Fairlamb, A.H., Weislogel, P.O., Hoeijmakers, J.H., Borst, P.: Isolation and characterization of kinetoplast DNA from bloodstream form of Trypanosoma brucei. J. Cell Biol. 76(2), 293 (1978)

    Article  Google Scholar 

  • Grosberg, A.: Annealed lattice animal model and Flory theory for the melt of non-concatenated rings: towards the physics of crumpling. Soft Matter 10, 560 (2014)

    Article  ADS  Google Scholar 

  • Grosberg, A.Y., Rabin, Y., Havlin, S., Neer, A.: Crumpled globule model of the three-dimensional structure of DNA. Europhys. Lett. 23(5), 373 (1993)

    Article  ADS  Google Scholar 

  • Halverson, J.D., Lee, W.B., Grest, G.S., Grosberg, A.Y., Kremer, K.: Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. I. Statics. J. Chem. Phys. 134(20), 204904 (2011a)

    Google Scholar 

  • Halverson, J.D., Lee, W.B., Grest, G.S., Grosberg, A.Y., Kremer, K.: Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. II. Dynamics. J. Chem. Phys. 134(20), 204905 (2011b)

    Google Scholar 

  • Halverson, J.D., Smrek, J., Kremer, K., Grosberg, A.: From a melt of rings to chromosome territories: the role of topological constraints in genome folding. Rep. Prog. Phys. 77, 022601 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  • Hosler, D., Burkett, S.L., Tarkanian, M.J.: Prehistoric Polymers: Rubber Processing in Ancient Mesoamerica. Science 284(June), 1988 (1999)

    Article  Google Scholar 

  • Hurst, L.D., Dawkins, R.: Life in a test tube. Nature 357, 198 (1992)

    Article  ADS  Google Scholar 

  • Jensen, R.E., Englund, P.T.: Network news: the replication of kinetoplast DNA. Annu. Rev. Microbiol. 66, 473 (2012)

    Article  Google Scholar 

  • Kapnistos, M., Lang, M., Vlassopoulos, D., Pyckhout-Hintzen, W., Richter, D., Cho, D., Chang, T., Rubinstein, M.: Unexpected power-law stress relaxation of entangled ring polymers. Nat. Mater. 7(12), 997 (2008)

    Article  ADS  Google Scholar 

  • Liu, L., Perkocha, L., Calendar, R., Wang, J.C.: Knotted DNA from bacteriophage capsids. Proc. Natl. Acad. Sci. USA 78(9), 5498 (1981)

    Article  ADS  Google Scholar 

  • Liu, L.F., Depew, R.E., Wang, J.C.: Knotted single-stranded DNA rings: A novel topological isomer of circular single-stranded DNA formed by treatment with Escherichia coli \(\omega \) protein. J. Mol. Biol. 106, 439 (1976)

    Article  Google Scholar 

  • Lo, W.-C., Turner, M.S.: The topological glass in ring polymers. Europhys. Lett. 102(5), 58005 (2013)

    Article  ADS  Google Scholar 

  • Marini, B., Kertesz-Farkas, A., Ali, H., Lucic, B., Lisek, K., Manganaro, L., Pongor, S., Luzzati, R., Recchia, A., Mavilio, F., Giacca, M., Lusic, M.: Nuclear architecture dictates HIV-1 integration site selection. Nature 521(7551), 227 (2015)

    Article  ADS  Google Scholar 

  • McLeish, T.: Polymers without beginning or end. Science 297(5589), 2005 (2002)

    Article  Google Scholar 

  • McLeish, T.C.B.: Floored by the rings. Nature 7, 933 (2008)

    Article  Google Scholar 

  • Mirny, L.A.: The fractal globule as a model of chromatin architecture in the cell. Chromosome Res. 19(1), 37 (2011)

    Article  Google Scholar 

  • Olavarrieta, L., Martínez-Robles, M.L., Sogo, J.M., Stasiak, A., Hernández, P., Krimer, D.B., Schvartzman, J.B.: Supercoiling, knotting and replication fork reversal in partially replicated plasmids. Nucleic Acids Res. 30(3), 656 (2002)

    Article  Google Scholar 

  • Pasquino, R., Vasilakopoulos, T., Jeong, C., Lee, H., Rogers, S., Sakellariou, G., Allgaier, J., Takano, A., Bras, A., Chang, T., Goossen, S., Pyckhout-Hintzen, W., Wischnewski, A., Hadjichristidis, N., Richter, D., Rubinstein, M., Vlassopoulos, D.: Viscosity of Ring Polymer Melts. ACS Macro Lett. 2, 874 (2013)

    Article  Google Scholar 

  • Rosa, A., Everaers, R.: Structure and dynamics of interphase chromosomes. PLoS Comput. Biol. 4(8), 1 (2008)

    Article  MathSciNet  Google Scholar 

  • Rosa, A., Everaers, R.: Ring polymers in the melt state: The physics of crumpling. Phys. Rev. Lett. 112, 118302 (2014)

    Article  ADS  Google Scholar 

  • Staudinger, H.: Über polymerisation. Berichte der deutschen chemischen Gesellschaft (A and B Series) 53(6), 1073 (1920)

    Article  Google Scholar 

  • Trigueros, S., Arsuaga, J., Vazquez, M.E., Sumners, D., Roca, J.: Novel display of knotted DNA molecules by two-dimensional gel electrophoresis. Nucleic Acids Res. 29(13), E67 (2001)

    Article  Google Scholar 

  • Vettorel, T., Grosberg, A.Y., Kremer, K.: Statistics of polymer rings in the melt: a numerical simulation study. Phys. Biol. 6(2), 025013 (2009)

    Article  ADS  Google Scholar 

  • Viovy, J.: Constraint release in the slip-link model and the viscoelastic properties of polymers. J. Phys. 46, 847 (1985)

    Article  Google Scholar 

  • Viovy, J.: Electrophoresis of DNA and other polyelectrolytes: Physical mechanisms. Rev. Mod. Phys. 72(3), 813 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Michieletto .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Michieletto, D. (2016). Introduction. In: Topological Interactions in Ring Polymers. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-41042-5_1

Download citation

Publish with us

Policies and ethics