Ebola in the Hog Sector: Modeling Pandemic Emergence in Commodity Livestock

  • Rodrick Wallace
  • Luke Bergmann
  • Lenny Hogerwerf
  • Richard Kock
  • Robert G. WallaceEmail author


Commodity agriculture represents an expanding sink for a growing array of zoonotic pathogens. The emergence of novel strains of Ebola by way of economically driven shifts in husbandry and horticulture appears one such transition. Following up experimental studies of Ebola transmission, the agroeconomic origins of the Zaire ebolavirus outbreak in West Africa, and reports of endemic Reston ebolavirus in commercial hog in the Philippines and China, we develop a series of stochastic models that explicitly integrate epidemiology, spatial dynamics, and economics. Our inductive modeling suggests repeated punctuated emergence and human spillover of foodborne pathogens are intrinsic to industrial systems of production. In contrast to traditional and conservation agroecologies, by its accelerated and geographically expansive production of genetically uniform seed and stock, highly capitalized agriculture appears especially vulnerable to sudden shifts in disease evolution and spread. Industrial food production strips out environmental stochasticity that can cap pathogen population growth. The mechanisms for such explosive epidemiologies appear fundamentally founded in economic policy and practice. A variant of the Black–Scholes pricing model implies that pathogen propagation in intensive agrifood production outpaces the margins the sector allocates to biocontrol and containment across large expanses of the model’s parameter space. The resulting financial gaps appear met by externalizing the epidemiological costs of industrial food production to livestock morbidity, contract producers, farmworker and consumer health, smallholder markets, local wildlife, off-site environments, and government budgets across administrative units. By way of the models’ results, we hypothesize that as the hog sector expands for export, including across areas of Africa in which Ebola has already emerged as a human infection, multiple Ebola strains will follow Reston’s trajectory, evolving novel phenotypes in livestock and repeatedly spilling over into human populations.


Ebola Commodity agriculture Pathogen emergence Phase transition Socioeconomic policy 



The authors thank Marius Gilbert and Thomas Van Boeckel for perspicacious comment. The research reported here is part of a line of research organized as the Ebola Agroeconomic Systems Team (EAST). Partial support for this publication came from a Eunice Kennedy Shriver National Institute of Child Health and Human Development research infrastructure grant, R24 HD042828, to the Center for Studies in Demography and Ecology at the University of Washington.


  1. Alawneh J. I., Barnes, T. S., Parke, C., Lapuz, E., David, E., Basinang, V., et al. (2014). Description of the pig production systems, biosecurity practices and herd health providers in two provinces with high swine density in the Philippines. Preventive Veterinary Medicine, 114(2), 73–87. doi: 10.1016/j.prevetmed.2014.01.020. Epub 2014 Jan 29.Google Scholar
  2. Alexandratos, N., & Bruinsma, J. (2012). World Agriculture Towards 2030/2050: The 2012 Revision. ESA Working Paper 12-03. Available online at
  3. Allen, J., & Lavau, S. (2014). Just-in-time disease: Biosecurity, poultry and power. Journal of Cultural Economics.
  4. Arthur, J. A., & Albers, G. A. (2003). Industrial perspective on problems and issues associated with poultry breeding. In: W. M. Muir, & S. E. Aggrey (Eds.), Poultry genetics, breeding and biotechnology. Oxfordshire: CABI Publishing.Google Scholar
  5. Atherstone, C., Roesel, K., & Grace, D. (2014). Ebola risk assessment in the pig value chain in Uganda. ILRI Research Report 34, International Livestock Research Institute, Nairobi, Kenya.Google Scholar
  6. Atkins, K., Wallace, R. G., Hogerwerf, L., Gilbert, M., Slingenbergh, J., Otte, J., et al. (2010). Livestock landscapes and the evolution of influenza virulence. Virulence Team Working Paper No. 1, Animal Health and Production Division, Food and Agriculture Organization of the United Nations, Rome.Google Scholar
  7. Bailey, N. T. (1975). The mathematical theory of infectious diseases and its applications. New York: Hafner Press.Google Scholar
  8. Balk, D. L., Deichmann, U., Yetman, G., Pozzi, F., Hay, S. I., & Nelson, A. (2006). Determining global population distribution: Methods, applications and data. Advances in Parasitology, 62, 119–156.
  9. Baron, R. C., McCormick, J. B., & Zubeir, O. A. (1983). Ebola virus disease in southern Sudan: Hospital dissemination and intrafamilial spread. Bulletin of the World Health Organization, 61, 99–1003.Google Scholar
  10. Barrette, R. W., Metwally, S. A., Rowland, J. M., Xu, L., Zaki, S. R., Nichol, S. T., et al. (2009). Discovery of swine as a host for the Reston ebolavirus. Science, 325(5937), 204–206. doi: 10.1126/science.1172705.PubMedCrossRefGoogle Scholar
  11. Bartsch, S. M., Gorham, K., & Lee, B. Y. (2015). The cost of an Ebola case. Pathogens and global health, 109(1), 4–9.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bausch, D. (2011). Ebola virus as a foodborne pathogen? Cause for consideration but not panic. Journal of Infectious Disease, 204, 179–181.CrossRefGoogle Scholar
  13. Bausch, D., & Schwarz, L. (2014). Outbreak of Ebola virus disease in Guinea: Where ecology meets economy. PLOS Neglected Tropical Diseases, 8, e3056.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Beddington, J., & May, R. (1977). Harvesting natural populations in a randomly fluctuating environment. Science, 197, 463–465.PubMedCrossRefGoogle Scholar
  15. Beer, A. (2012). The economic g of Australia and its analysis: From industrial to post-industrial regions. Geographical Research, 50(3), 269–281.CrossRefGoogle Scholar
  16. Bello, W. (2003). Multilateral punishment: The Philippines in the WTO, 1995–2003. Stop the New Round Coalition! Manila: Focus on the Global South.
  17. Bergmann, L. R. (2013a). Bound by chains of carbon: Ecological-economic geographies of globalization. Annals of the Association of American Geographers, 103, 1348–1370. Scholar
  18. Bergmann, L. R. (2013b). Beyond the Anthropocene: Toward modest mathematical narratives for more-than-human global communities. Paper accepted for session: ‘Re-evaluating the Anthropocene, Resituating Anthropos,’ Annual Meeting of the Association of American Geographers, Los Angeles.Google Scholar
  19. Bertherat, E., Renaut, A., Nabias, R., Dubreuil, G., & Georges-Courbot, M. C. (1999). Leptospirosis and Ebola virus infection in five gold-panning villages in northeastern Gabon. The American Journal of Tropical Medicine and Hygiene, 60(4), 610–615.PubMedGoogle Scholar
  20. Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81, 637–654.CrossRefGoogle Scholar
  21. Boni, M. F., Galvani, A. P., Wickelgrend, A. L., & Malani, A. (2013). Economic epidemiology of avian influenza on smallholder poultry farms. Theoretical Population Biology, 90, 135e144.CrossRefGoogle Scholar
  22. Borras, S. M., & Franco, J. C. (2011). Political dynamics of land-grabbing in Southeast Asia: Understanding Europe’s role. Amsterdam: Transnational Institute.Google Scholar
  23. Bowen-Jones, E., Brown, D., & Robinson, E. J. Z. (2003). Economic commodity or environmental crisis? An interdisciplinary approach to analysing the bushmeat trade in Central and West Africa. Area, 35(4), 390–402.CrossRefGoogle Scholar
  24. Boyd, I. L., Freer-Smith, P. H., Gilligan, C. A., & Godfray, H. C. (2013). The consequence of tree pests and diseases for ecosystem services. Science, 342, 1235773. doi: 10.1126/science.1235773.PubMedCrossRefGoogle Scholar
  25. Brown, C. (2004). Emerging zoonoses and pathogens of public health significance – an overview. Scientific and Technical Review of the Office International des Epizooties (Paris), 23(2), 435–442.CrossRefGoogle Scholar
  26. Burdon, J., & Thrall, P. (2008). Pathogen evolution across the agro-ecological interface: Implications for management. Evolutionary Applications, 1, 57–65.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cai, Y., Wang, X., Wang, W., & Zhao, M. (2013). Stochastic dynamics of an SIRS epidemic model with ratio-dependent incidence rate. Abstract and Applied Analysis, 11pp. ID 172631.Google Scholar
  28. Capua, I., & Marangon, S. (2007). Control and prevention of avian influenza in an evolving scenario. Vaccine, 25(30), 5645–5652.PubMedCrossRefGoogle Scholar
  29. Cardinoza, G., & Reyes, C. (2009, January 8). UN agencies inspect Luzon hog farms. Philippine Daily Inquirer.
  30. Carroll, A., Towner, J. S., Sealy, T. K., McMullan, L. K., Khristova, M. L., Burt, F. J., et al. (2013). Molecular evolution of viruses of the family Filoviridae based on 97 whole-genome sequences. Journal of Virology, 87, 2608–2616.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Catelo, M. A. O., Narrod, C. A., & Tiongco, M. M. (2008). Structural Changes in the Philippine Pig Industry and Their Environmental Implications. IFPRI Discussion Paper 00781, The International Food Policy Research Institute, Washington, DC.Google Scholar
  32. Centeno, M. A., & Cohen, J. N. (2012). The arc of Neoliberalism. Annual Review of Sociology, 38, 317–340. doi: 10.1146/annurev-soc-081309-150235.CrossRefGoogle Scholar
  33. Chua, K. B. (2003). Nipah virus outbreak in Malaysia. Journal of Clinical Virology, 26, 265–275.PubMedCrossRefGoogle Scholar
  34. Costales, A., Delgado, C., Catelo, M. A., Lapar, M. L., Tiongco, M., Ehui, S., et al. (2007). Scale and access issues affecting smallholder hog producers in and expanding peri-urban market; Southern Luzon, Philippines. IFPRI Research Report No. 151. IFPRI, Washington, DC.
  35. Costales, A. C., Delgado, C., Catelo, M. A. O., Tiongco, M., Chatterjee, A., delos Reyes, A., & Narrod, C. (2003). Policy, technical, and environmental determinants and implications of the scaling-up of broiler and swine production in The Philippines. Annex I, Final Report of IFPRI-FAO Livestock Industrialization Project: Phase, I. I., International Food Policy Research Institute, Washington, DC.Google Scholar
  36. Coxhead, I., & Jayasuriya, S. (2002). Development Strategy, Poverty and Deforestation in the Philippines. Department of Agricultural & Applied Economics, University of Wisconsin-Madison, Staff Paper No. 456.
  37. Coxhead, I., Shively, G., & Shuai, X. (1999). Development Policies, Resource Constraints, and Agricultural Expansion on the Philippine Land Frontier. Department of Agricultural & Applied Economics, University of Wisconsin-Madison, Staff Paper No. 425.
  38. Cyranoski, D. (2009). Ebola outbreak has experts rooting for answers. Nature, 457, 364–365.PubMedCrossRefGoogle Scholar
  39. Daszak, P., Plowright, R. K., Epstein, J. H., Pulliam, J., Abdul Rahman, S., Field, H. E., et al. (2006). The emergence of Nipah and Hendra virus: Pathogen dynamics across a wildlife-livestock-human continuum. In S. K. Collinge & Ray, C. (Eds.), Disease ecology: Community structure and pathogen dynamics (pp. 186–201). Oxford: Oxford University Press.CrossRefGoogle Scholar
  40. David, C. C. (1997). Agricultural policy and the WTO agreement: The Philippine case. Discussion Paper Series No. 97–13, Philippine Institute for Development Studies, Makati City.
  41. Delgado, C. L., Narrod, C., & Tiongco, M. M. (2003). Policy, technical, and environmental determinants and implications of the scaling-up of livestock production in four fast-growing developing countries: A synthesis. Final Research Report of Phase, I. I., Project on Livestock Industrialization, Trade and Social-Health-Environment Impacts in Developing Countries.
  42. Dembo, A., & Zeitouni, O. (1998). Large deviations: Techniques and applications. New York: Springer.CrossRefGoogle Scholar
  43. Diaz, S., Fargione, J., Chapin, F. S., & Tilman, D. (2006). Biodiversity loss threatens human well-being. PLoS Biology, 4(8), e277. doi: 10.1371/journal.pbio.0040277.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Drew, T. W. (2011). The emergence and evolution of swine viral diseases: To what extent have husbandry systems and global trade contributed to their distribution and diversity? Revue Scientifique et Technique (Paris), 30, 95–106.CrossRefGoogle Scholar
  45. Dudas, G., & Rambaut, A. (2014). Phylogenetic analysis of Guinea 2014 EBOV Ebolavirus outbreak 2014. PLOS Currents Outbreaks, 6. ecurrents.outbreaks.84eefe5ce43ec9dc0bf0670f7b8b417d.Google Scholar
  46. Engering, A., Hogerwerf, L., & Slingenbergh, J. (2013). Pathogen host environment interplay and disease emergence. Emerging Microbes and Infections, 2, e5.
  47. Epstein, J. H., Field, H. E., Luby, S., Pulliam, J. R., & Daszak, P. (2006). Nipah virus: Impact, origins, and causes of emergence. Current Infectious Disease Reports, 8(1), 59–65.PubMedCrossRefGoogle Scholar
  48. Ercsey-Ravasz, M., Toroczkai, Z., Lakner, Z., & Baranyi, J. (2012). Complexity of the international agro-food trade network and its impact on food safety. PLoS One, 7(5), e37810.
  49. FAO (2013a). FAO Statistical Yearbook 2013. Food and Agriculture Organization, United Nations, Rome.Google Scholar
  50. FAO (2013b). World Livestock 2013: Changing disease landscapes. Food and Agriculture Organization, United Nations, Rome.Google Scholar
  51. Farber, S. C., Costanza, R., & Wilson, M. A. (2002). Economic and ecological concepts for valuing ecosystem services. Ecological Economics, 41, 375–392.CrossRefGoogle Scholar
  52. Field, H., Young, P., Yob, J. M., Mills, J., Hall, L., & Mackenzie, J. (2001). The natural history of Hendra and Nipah viruses. Microbes and Infection, 3(4), 307–314.PubMedCrossRefGoogle Scholar
  53. Foley, J., Defries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., et al. (2005). Global consequences of land use. Science, 309, 570–574.PubMedCrossRefGoogle Scholar
  54. Formenty, P., Boesch, C., Wyers, M., Steiner, C., Donati, F., Dind, F., et al. (1999). Ebola virus outbreak among wild chimpanzees living in a rain forest of Cote d’Ivoire. The Journal of Infectious Diseases, 179(1), S120–126.PubMedCrossRefGoogle Scholar
  55. Foster, J. T., Beckstrom-Sternberg, S. M., Pearson, T., Beckstrom-Sternberg, J. S., Chain, P. S., Roberto, F. F., et al. (2009). Whole-genome-based phylogeny and divergence of the genus Brucella. Journal of Bacteriology, 191(8), 2864–2870. doi: 10.1128/JB.01581-08.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Fuller, T. L., Gilbert, M., Martin, V., Cappelle, J., Hosseini, P., Njabo, K. Y., et al. (2013). Predicting hotspots for influenza virus reassortment. Emerging Infectious Diseases, 19(4), 581–588. doi: 10.3201/eid1904.120903.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Fulton, J. E. (2006). Avian genetic stock preservation: An industry perspective. Poultry Science, 85(2), 227–231. Paper for the Poultry Science Association Ancillary Scientists Symposium, July 31, 2005, Auburn, Alabama, “Conservation of Avian Genetic Resources: Current Opportunities and Challenges,” organized and chaired by Dr. Muquarrab Qureshi.Google Scholar
  58. Ganti, T. (2014). Neoliberalism. Annual Review of Anthropology, 43, 89–104. doi: 10.1146/annurev-anthro-092412-155528.CrossRefGoogle Scholar
  59. Gatherer, D. (2015). The unprecedented scale of the West African Ebola virus disease outbreak is due to environmental and sociological factors, not special attributes of the currently circulating strain of the virus. Evidence-Based Medicine, 20(1), 28. doi: 10.1136/ebmed-2014-110127.PubMedCrossRefGoogle Scholar
  60. Genoways, T. (2014). The Chain: Farm, Factory, and the Fate of Our Food. New York: Harper-Collins.Google Scholar
  61. Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., et al. (2013). Tackling Climate Change Through Livestock – A Global Assessment of Emissions and Mitigation Opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome.
  62. Gilbert, M., & Pfeiffer, D. U. (2012). Risk factor modelling of the spatio-temporal patterns of highly pathogenic avian influenza (HPAIV) H5N1: A review. Spatial and spatio-temporal epidemiology, 3(3), 173–183. doi: 10.1016/j.sste.2012.01.002.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Gire, S. K., Goba, A., & Andersen, K. G. (2014). Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science, 345, 1369–1372.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Gonzalez, J.-P., Herbreteau, V., Morvan, J., & Leory, E. (2005). Ebola virus circulation in Africa: A balance between clinical expression and epidemiological silence. Bulletin de la Societe de pathologie exotique, 98(3), 210–221.PubMedGoogle Scholar
  65. Gould, P., & Wallace, R. (1994). Spatial structures and scientific paradoxes in the AIDS pandemic. Geofrafiska Annaler, 76B, 105–116.CrossRefGoogle Scholar
  66. Graham, J. P., Leibler, J. H., Price, L. B., Otte, J. M., Pfeiffer, D. U., Tiensin, T., et al. (2008). The animal-human interface and infectious disease in industrial food animal production: Rethinking biosecurity and biocontainment. Public Health Reports, 123, 282–299.PubMedPubMedCentralGoogle Scholar
  67. Groseth, A., Feldmann, H., & Strong, J. E. (2007). The ecology of Ebola virus. Trends in Microbiology, 15(9), 408–416.PubMedCrossRefGoogle Scholar
  68. Guo, H. G., Pati, S., Sadowska, M., Charurat, M., & Reitz, M. (2004). Tumorigenesis by human herpesvirus 8 vGPCR is accelerated by human immunodeficiency virus type 1 Tat. Journal of Virology, 78(17), 9336–9342.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Habito, C. F. (2011). Economy, environment and Filipino children. In F. Rosario-Braid, R. R. Tuazon, & Lopez, A. L. C. (Eds.), The future of Filipino children: Development issues and trends. UNICEF and Asian Institute of Journalism and Communication.
  70. Halpin, K., & Mungall, B. (2007). Recent progress in henipavirus research. Comparative Immunology, Microbiology and Infectious Diseases, 30, 287–307.PubMedCrossRefGoogle Scholar
  71. Harvey, D. (2005). A brief history of Neoliberalism. Oxford: Oxford University Press.Google Scholar
  72. Hayman, D. T., Bowen, R. A., Cryan, P. M., McCracken, G. F., O’Shea, T. J., Peel, A. J., et al. (2013). Ecology of zoonotic infectious diseases in bats: Current knowledge and future directions. Zoonoses Public Health, 60(1), 2–21. doi: 10.1111/zph.12000.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Heaney, L. R., Walsh, J. S. Jr., & Peterson, A. T. (2005). The roles of geological history and colonization abilities in genetic differentiation between mammalian populations in the Philippine archipelago. Journal of Biogeography, 32, 229–247.CrossRefGoogle Scholar
  74. Herrero, M., Havlík, P., Valin, H., Notenbaert, A., Rufino, M. C., Thornton, P. K., et al. (2013). Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proceedings of the National Academy of Sciences of the United States of America, 110(52), 20888–20893. doi: 10.1073/pnas.1308149110.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Higgins, V., Dibden, J., & Cocklin, C. (2012). Market instruments and the neoliberalisation of land management in rural Australia. Geoforum, 43, 377–386.CrossRefGoogle Scholar
  76. Hinchliffe, S. (2015). More than one world, more than one health: Re-configuring interspecies health. Social Science & Medicine, 129, 28–35.CrossRefGoogle Scholar
  77. Hoberg, E. P., & Brooks, D. R. (2015). Evolution in action: Climate change, biodiversity dynamics and emerging infectious disease. Philosophical Transactions B, 370, 20130553.CrossRefGoogle Scholar
  78. Hogerwerf, L., Houben, R., Hall, K., Gilbert, M., Slingenbergh, J., & Wallace, R. G. (2010). Agroecological resilience and protopandemic influenza. Final report, Animal Health and Production Division, Food and Agriculture Organization, Rome.Google Scholar
  79. Horsthemeke, W., & Lefever, R. (2006). Noise-induced transitions (Vol. 15). Theory and applications in physics, chemistry, and biology. New York: Springer.Google Scholar
  80. Humphries-Waa, K., Drake, T., Huszar, A., Liverani, M., Borin, K., Touch, S., et al. (2013). Human H5N1 influenza infections in Cambodia 2005–2011: Case series and cost-of-illness. BMC Public Health, 13, 549. doi: 10.1186/1471-2458-13-549.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Huyse, T., Poulin, R., & Theron, A. (2005). Speciation in parasites: A population genetics approach. Trends in Parasitology, 21(10), 469–475.PubMedCrossRefGoogle Scholar
  82. Ilinykh, P. A., Lubaki, N. M., Widen, S. G., Renn, L. A., Theisen, T. C., Rabin, R. L., et al. (2015). Different temporal effects of Ebola virus VP35 and VP24 proteins on the global gene expression in human dendritic cells. Journal of Virology, 00924-15.doi: 10.1128/JVI.00924-15.Google Scholar
  83. Jones, K. E., Mickleburgh, S. P., Sechrest, W., & Walsh, A. L. (2009). Global overview of the conservation of island bats: Importance, challenges, and opportunities. In T.H. Fleming, & P.A. Racey (Eds.), Island bats: Evolution, ecology, and conservation. Chicago: University of Chicago Press.Google Scholar
  84. Jones, B. A., Grace, D., Kock, R., Alonso, S., Rushton, J., Said, M. Y., et al. (2013). Zoonosis emergence linked to agricultural intensification and environmental change. PNAS, 110, 8399–8404.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Jones, J. (2011). Ebola, emerging: The limitations of culturalist discourses in epidemiology. The Journal of Global Health, 1, 1–6.
  86. Kelly, P. F. (1998). The politics of urban-rural relations: Land use conversion in the Philippines. Environment and Urbanization, 10, 35–54.Google Scholar
  87. Kelly, P. F. (2000). Landscapes of globalization: Human geographies of economic change in the Philippines. London: Routledge.Google Scholar
  88. Kelly, P. F. (2011). Migration, agrarian transition, and rural change in Southeast Asia. Critical Asian Studies, 43(4), 479–506. doi: 10.1080/14672715.2011.623516.CrossRefGoogle Scholar
  89. Kemeny, J., & Snell, J. (1976). Finite Markov Chains. New York: Springer.Google Scholar
  90. Kentikelenis, A., King, L., McKee, M., & Stuckler, D. (2014). The international monetary fund and the ebola outbreak. The Lancet Global Health.
  91. Khan, S. U., Atanasova, K. R., Krueger, W. S., Ramirez, A., & Gray, G. C. (2013). Epidemiology, geographical distribution, and economic consequences of swine zoonoses: A narrative review. Emerging Microbes & Infections, 2, e92. doi: 10.1038/emi.2013.87.CrossRefGoogle Scholar
  92. Khasminskii, R. (1966). Necessary and sufficient conditions for the asymptotic stability of linear stochastic systems. Theory of Probability and its Applications, 12, 144–147. (In Russian, translated by B. Seckler, 2006).Google Scholar
  93. Khasminskii, R. (2012). Stochastic stability of differential equations. New York: Springer.CrossRefGoogle Scholar
  94. Khasminskii, R., Zhu, C., & Yin, G. (2007). Stability of regime-switching diffusions. Stochastic Processes and their Applications, 117, 1037–1051.CrossRefGoogle Scholar
  95. Kleczkowski, A., Oleś, K., Gudowska-Nowak, E., & Gilligan, C. A. (2012). Searching for the most cost-effective strategy for controlling epidemics spreading on regular and small-world networks. Journal of the Royal Society, Interface, 9(66), 158–169. doi: 10.1098/rsif.2011.0216.PubMedCrossRefGoogle Scholar
  96. Kobinger, G., Leung, A., Neufeld, J., Richardson, J. S., Falzarano, D., Smith, G., et al. (2011). Replication, pathogenicity, shedding, and transmission of Zaire ebolavirus in pigs. Journal of Infectious Disease, 204, 200–208.CrossRefGoogle Scholar
  97. Kock, R. A. (2005). What is this infamous ‘Wildlife/Livestock Disease Interface’? A review of current knowledge for the African continent. In S. A. Osofsky, S. Cleaveland, W. B. Karesh, M. D. Kock, P. J. Nyhus, L. Starr & A. Yang, A. (Eds.), Conservation and development interventions at the wildlife/livestock interface implications for wildlife, livestock and human health (pp. 1–13). Gland, and Cambridge: IUCN.Google Scholar
  98. Kock, R. A., Alders, R., & Wallace, R. G. (2012). Wildlife, wild food, food security and human society. In Animal health and biodiversity - preparing for the future. Illustrating contributions to public health (pp. 71e79). Compendium of the OIE Global Conference on Wildlife 23–25 February 2011 Paris.Google Scholar
  99. Kock, R., Kock, M., Cleaveland, S., & Thomson, G. (2010). Health and disease in wild rangelands. In J. du Toit, R. Kock, & J. Deutsch (Eds.), Wild rangelands: Conserving wildlife while maintaining livestock in semi-arid ecosystems. Oxford: Wiley-Blackwell.Google Scholar
  100. Knight-Jones, T. J., & Rushton, J. (2013). The economic impacts of foot and mouth disease - what are they, how big are they and where do they occur? Preventive Veterinary Medicine, 112(3–4), 161–73. doi: 10.1016/j.prevetmed.2013.07.013.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Lapus, Z. M. (2014). Pork outlook 2014: Philippines. What the experts say.
  102. Lawn, S. D. (2004). AIDS in Africa: The impact of coinfections on the pathogenesis of HIV-1 infection. Journal of Infection, 48, 1–12.PubMedCrossRefGoogle Scholar
  103. Lawrence, G., Richards, C., & Lyons, K. (2013). Food security in Australia in an era of neoliberalism, productivism and climate change. Journal of Rural Studies, 29, 30–39.CrossRefGoogle Scholar
  104. Lehrnbecher, T. L., Foster, C. B., Zhu, S., Venzon, D., Steinberg, S. M., Wyvill, K., et al. (2000). Variant genotypes of FcgammaRIIIA influence the development of Kaposi’s sarcoma in HIV-infected men. Blood, 95(7), 2386–2390.PubMedGoogle Scholar
  105. Leibler, J. H., Otte, J., Roland-Holst, D., Pfeiffer, D. U., Magalhaes, R. S., Rushton, J., et al. (2009). Industrial food animal production and global health risks: Exploring the ecosystems and economics of Avian Influenza. EcoHealth, 6, 58–70.PubMedCrossRefGoogle Scholar
  106. Levin, S. A., Barrett, S., Aniyar, S., Baumol, W., Bliss, C., Bolin, B., et al. (1998). Resilience in natural and socioeconomic systems. Environment and Development Economics, 3(2), 221–262.CrossRefGoogle Scholar
  107. Levins, R. (1968). Evolution in Changing Environments. Princeton: Princeton University Press.Google Scholar
  108. Leonard, C. (2014). The Meat Racket: The Secret Takeover of America’s Food Business. New York: Simon & Schuster.Google Scholar
  109. Leroy, E. M., Epelboin, A., Mondonge, V., Pourrut, X., Gonzalez, J. -P., Muyembe-Tamfum, J. J., et al. (2009). Human Ebola outbreak resulting from direct exposure to fruit bats in Luebo. Democratic Republic of Congo, 2007. Vector-Borne and Zoonotic Diseases, 9(6), 723–728. doi: 10.1089/vbz.2008.0167.PubMedCrossRefGoogle Scholar
  110. Lewnard, J. A., Ndeffo Mbah, M. L., Alfaro-Murillo, J. A., Altice, F. L., Bawo, L., Nyenswah, T. G., et al. (2014). Dynamics and control of Ebola virus transmission in Montserrado, Liberia: A mathematical modelling analysis. Lancet Infectious Diseases. doi: 10.1016/S1473-3099(14)70995-8.PubMedGoogle Scholar
  111. Lipsitch, M., & Nowak, M.A. (1995). The evolution of virulence in sexually transmitted HIV/AIDS. Journal of Theoretical Biology, 174(4), 427–440.PubMedCrossRefGoogle Scholar
  112. Liu, Z. (2013). Dynamics of positive solutions to SIR and SEIR epidemic models with saturated incidence rates. Nonlinear Analysis: Real World Applications, 14, 1286–1299.CrossRefGoogle Scholar
  113. Liverani, M., Waage, J., Barnett, T., Pfeiffer, D. U., Rushton, J., Rudge, J. W., et al. (2013). Understanding and managing zoonotic risk in the new livestock industries. Environmental Health Perspectives, 121, 873–877. Scholar
  114. Longworth, N., Mourits, M. C., & Saatkamp, H. W. (2014). Economic analysis of HPAI control in the Netherlands II: Comparison of control strategies. Transboundary and Emerging Diseases, 61(3), 217–232. doi: 10.1111/tbed.12034.PubMedCrossRefGoogle Scholar
  115. Luby, S. P., Gurley, E. S., & Hossain, M. J. (2009). Transmission of human infection with Nipah Virus. Clinical Infectious Diseases, 49, 1743–1748.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Marsh, G., Haining, J., Robinson, R., Foord, A., Yamada, M., Barr, J. A., et al. (2011). Ebola Reston virus infection in pigs: Clinical significance and transmission potential. Journal of Infectious Disease, 204(S3):S804–S809.CrossRefGoogle Scholar
  117. Maye, D., Dibden, J., Higgens, V., & Potter, C. (2012). Governing biosecurity in a neoliberal world: Comparative perspectives from Australia and the United Kingdom. Environment and Planning A, 44, 150–168.CrossRefGoogle Scholar
  118. Mayer, J. (2000). Geography, ecology and emerging infectious diseases. Social Science & Medicine, 50, 937–952.CrossRefGoogle Scholar
  119. McFarlane, R., Becker, N., & Field, H. (2011). Investigation of the climatic and environmental context of Hendra virus spillover events 1994–2010. PLoS ONE, 6(12), e28374. doi: 10.1371/journal.pone.0028374.PubMedPubMedCentralCrossRefGoogle Scholar
  120. McKenzie, F. C. (2011). Farmer-driven innovation in agriculture: Creating opportunities for sustainability. Dissertation, Doctor of Philosophy, School of Geosciences, Faculty of Science, University of Sydney.
  121. Meentemeyer, R. K., Haas, S. E., & Vaclavik, T. (2012). Landscape epidemiology of emerging infectious diseases in natural and human-altered ecosystems. Annual Review of Phytopathology, 50, 379–402.PubMedCrossRefGoogle Scholar
  122. Mennerat, A., Nilsen, F., Ebert, D., & Skorping, A. (2010). Intensive farming: Evolutionary implications for parasites and pathogens. Evolutionary Biology, 37, 59e67.CrossRefGoogle Scholar
  123. Merler, S., Ajelli, M., Fumanelli, L., Gomes, M. F., Piontti, A. P., Rossi, L., et al. (2015). Spatiotemporal spread of the 2014 outbreak of Ebola virus disease in Liberia and the effectiveness of non-pharmaceutical interventions: A computational modelling analysis. The Lancet Infectious Diseases. pii: S1473–3099(14)71074–6. doi: 10.1016/S1473-3099(14)71074-6.Google Scholar
  124. Messinger, S., & Ostling, A. (2009). The consequences of spatial structure for pathogen evolution. The American Naturalist, 174, 441–454.PubMedCrossRefGoogle Scholar
  125. Miranda, M. E., & Miranda, N. L. (2011). Reston ebolavirus in humans and animals in the Philippines: A review. The Journal of Infectious Diseases, 204(3), S757–60. doi: 10.1093/infdis/jir296.PubMedCrossRefGoogle Scholar
  126. Moog, F. A. (1991). The role of fodder trees in Philippine smallholder farms. In A. Speedy & P.-L. Pugliese (Eds.), Legume trees and other fodder trees as protein sources for livestock. Proceedings of the FAO Expert consultation held at the Malaysian Agricultural Research and Development Institute (MARDI) in Kuala Lumpur, 14–18 October 1991.Google Scholar
  127. Morse, S., Mazet, J. A., Woolhouse, M., Parrish, C. R., Carroll, D., Karesh, W. B., et al. (2013). Zoonoses 3: Prediction and prevention of the next pandemic zoonosis. The Lancet, 380, 1956–1965.CrossRefGoogle Scholar
  128. Morvan, J. M., Nakoun, E., Deubel, V., & Colyn, M. (2000). [Forest ecosystems and Ebola virus]. Bulletin de la Société de Pathologie Exotique, 93(3), 172–175. [Article in French].Google Scholar
  129. Murray, J. (1989). Mathematical biology. New York: Springer.CrossRefGoogle Scholar
  130. Murray, K. A., & Daszak, P. (2013). Human ecology in pathogenic landscapes: Two hypotheses on how land use change drives viral emergence. Current Opinion in Virology, 3(1), 79–83. doi: 10.1016/j.coviro.2013.01.006.PubMedPubMedCentralCrossRefGoogle Scholar
  131. Myers, K., Olsen, C. W., Setterquist, S. F., Capuano, A. W., Donham, K. J., Thacker, E. L., et al. (2006). Are swine workers in the United States at increased risk of infection with zoonotic influenza virus? Clinical Infection and Disease, 42, 14–20.CrossRefGoogle Scholar
  132. Mylne, A., Brad, O. J., Huang, Z., Pigott, D. M., Golding, N., Kraemer, M. U. G., et al. (2014). A comprehensive database of the geographic spread of past human Ebola outbreaks. Scientific Data, 1, 140042. doi: 10.1038/sdata.2014.42.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Nair, G., Fagnani, F., Zampieri, S., & Evans, R. J. (2007). Feedback under data rate constraints: An overview. Proceedings of the IEEE, 95, 108–137.Google Scholar
  134. Neumann, E. J., Kliebenstein, J. B., Johnson, C. D., Mabry, J. W., Bush, E. J., Seitzinger, A. H., et al. (2005). Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States. Journal of the American Veterinary Medical Association, 227, 385–392.PubMedCrossRefGoogle Scholar
  135. Nfon, C. K., Leung, A., Smith, G., Embury-Hyatt, C., Kobinger, G., & Weingartl, H. M. (2013). Immunopathogenesis of severe acute respiratory disease in Zaire ebolavirus-infected pigs. PLoS One, 8(4), e61904. doi: 10.1371/journal.pone.0061904.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Ng, K. C., & Rivera, W. L. (2014). Antimicrobial resistance of Salmonella enterica isolates from tonsil and jejunum with lymph node tissues of slaughtered swine in Metro Manila, Philippines. ISRN Microbiology, 2014, 364265.PubMedPubMedCentralCrossRefGoogle Scholar
  137. Noer, C. L., Dabelsteen, T., Bohmann, K., & Monadjem, A. (2012). Molossid bats in an African agro-ecosystem select sugarcane fields as foraging habitat. African Zoology, 47(1), 1–11.CrossRefGoogle Scholar
  138. Oksendal, B. (2010). Stochastic differential equations: An introduction with applications. New York: Springer.Google Scholar
  139. Okubo, A. (1980). Diffusion and ecological problems: Mathematical models. Biomathematics (Vol. 10). New York: Springer.Google Scholar
  140. Olival, K. J., & Hayman, D. T. (2014). Filoviruses in bats: Current knowledge and future directions. Viruses, 6(4), 1759–1788. doi: 10.3390/v6041759.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Onwubuemeli, E. (1974). Agriculture, the theory of economic development, and the Zande Scheme. The Journal of Modern African Studies, 12(4), 569–587.CrossRefGoogle Scholar
  142. Otte, J., & Grace, D. (2013). Human health risks from the human-animal interface in Asia. In V. Ahuja (Ed.), Asian livestock: Challenges, opportunities and the response. Proceedings of an International Policy Forum Held in Bangkok, Thailand, 16–17 August 2012 (pp. 121–160). Animal Production and Health Commission for Asia and the Pacific, International Research Institute and Food and Agriculture Organization of the United Nations.Google Scholar
  143. Pagiola, S., & Holden, S. (2001). Farm household intensification decisions and the environment. In R. Lee, & C. B. Barrett (Eds.), Tradeoffs or Synergies? Agricultural Intensification, Economic Development, and the Environment. Wallingford: CAB International.Google Scholar
  144. Pan, Y., Zhang, W., Cui, L., Hua, X., Wang, M., & Zeng, Q. (2014). Reston virus in domestic pigs in China. Archives of Virology, 159(5), 1129–1132. doi: 10.1007/s00705-012-1477-6. Epub 2012 Sep 21.PubMedCrossRefGoogle Scholar
  145. Pappalardo, M., Julia, M., Howard, M. J., Rossman, J. S., Michaelis, M., & Wass, M. N. (2016). Conserved differences in protein sequence determine the human pathogenicity of Ebolaviruses. Scientific Reports, 6, 23743 doi: 10.1038/srep23743.PubMedPubMedCentralCrossRefGoogle Scholar
  146. Patz, J. A., Daszak, P., Tabor, G. M., Aguirre, A. A., Pearl, M., Epstein, J., et al. (2004). Unhealthy landscapes: Policy recommendations on land use change and infectious disease emergence. Environmental Health Perspectives, 112(10), 1092–1098.PubMedPubMedCentralCrossRefGoogle Scholar
  147. Pearce-Duvet, J. M. C. (2006). The origin of human pathogens: Evaluating the role of agriculture and domestic animals in the evolution of human disease. Biological Reviews of the Cambridge Philosophical Society, 81(3), 369–382.PubMedCrossRefGoogle Scholar
  148. Perfecto, I., & Vandermeer, J. (2010). The agroecological matrix as alternative to the land-sparing/agriculture intensification model. Proceedings of the National Academy of Sciences, 107(13), 5786–5791.CrossRefGoogle Scholar
  149. Peterson, A. T., Bauer, J. T., & Mills, J. N. (2004). Ecologic and geographic distribution of filovirus disease. Emerging Infectious Diseases, 10(1), 40–47.PubMedPubMedCentralCrossRefGoogle Scholar
  150. Pettini, M. (2007). Geometry and topology in Hamiltonian dynamics and statistical mechanics. New York: Springer.CrossRefGoogle Scholar
  151. Pielou, E. (1977). Mathematical ecology. New York: Wiley.Google Scholar
  152. Pigott, D. M., Golding, N., Mylne, A., Huang, Z., Henry, A. J., Weiss, D. J., et al. (2014). Mapping the zoonotic niche of Ebola virus disease in Africa. eLife, 3, e04395.PubMedPubMedCentralGoogle Scholar
  153. Plowright, R. K., Eby, P., Hudson, P. J., Smith, I. L., Westcott, D., Bryden, W. L., et al. (2015). Ecological dynamics of emerging bat virus spillover. Proceedings of the Biological Sciences, 282(1798), 20142124. doi: 10.1098/rspb.2014.2124.CrossRefGoogle Scholar
  154. Protter, P. (1990). Stochastic integration and differential equations. New York: Springer.CrossRefGoogle Scholar
  155. Robinson, T., et al. (2014). Mapping the global distribution of livestock. PLoS ONE, 9(5), e96084. doi: 10.1371/journal.pone.0096084.PubMedPubMedCentralCrossRefGoogle Scholar
  156. Roden, D. (1974). Regional inequality and rebellion in the Sudan. Geographical Review, 64(4), 498–516.CrossRefGoogle Scholar
  157. Ruecker, N. J., Matsune, J. C., Wilkes, G., Lapen, D. R., Topp, E., Edge, T. A., et al. (2012). Molecular and phylogenetic approaches for assessing sources of Cryptosporidium contamination in water. Water Research, 46(16), 5135–5150.PubMedCrossRefGoogle Scholar
  158. Russell, P., & McCall, S. (1973/2013). Can succession be justified? The case of the Southern Sudan. In Wai, D. M. (Ed.), The Southern Sudan: The problem of national integration. Oxon: Routledge.Google Scholar
  159. Saéz, A. M., Weiss, S., Nowak, K., Lapeyre, V., Zimmermann, F., Düx, A., et al. (2015). Investigating the zoonotic origin of the West African Ebola epidemic. EMBO Molecular Medicine, 7(1), 17–23.
  160. Sayama, Y., Demetria, C., Saito, M., Azul, R. R., Taniguchi, S., Fukushi, S., et al. (2012). A seroepidemiologic study of Reston ebolavirus in swine in the Philippines. BMC Veterinary Research, 8, 82. doi: 10.1186/1746-6148-8-82.PubMedPubMedCentralCrossRefGoogle Scholar
  161. Sedlock, J. L., Ingle, N. R., & Balete, D. S. (2011). Chapter 5: Enhanced sampling of bat assemblages: A field test on mount Banahaw, Luzon. Fieldiana Life and Earth Sciences, 2, 96–102.CrossRefGoogle Scholar
  162. Schoepp, R. J., Rossi, C. A., Khan, S. H., Goba, A., & Fair, J. N. (2014). Undiagnosed acute viral febrile illnesses, Sierra Leone. Emerging Infectious Diseases, 20, 1176–1182.PubMedPubMedCentralCrossRefGoogle Scholar
  163. Sedlock, J. L., Weyandt, S. E., Cororan, L., Damerow, M., Hwa, S.-H., & Pauli, B. (2008). Bat diversity in tropical forest and agro-pastoral habitats within a protected area in the Philippines. Acta Chiropterologica, 10(2), 349–358. doi:
  164. Shafie, N. J., Sah, S. A. M., Latip, N. S. A., Azman, N. M., & Khairuddin, N. L. (2011). Diversity pattern of bats at two contrasting habitat types along Kerian River, Perak. Tropical Life Sciences Research, 22(2), 13–22.PubMedPubMedCentralGoogle Scholar
  165. Shively, G. E. (2001). Agricultural change, rural labor markets, and forest clearing: An illustrative case from the Philippines. Land Economics, 77(2), 268–284.CrossRefGoogle Scholar
  166. Shively, G. E., & Pagiola, S. (2001). Poverty, agricultural development, and the environment: Evidence from a frontier region of the Philippines. Paper presented at AAEA, Chicago, 5–8 August 2001.
  167. Shively, G. E. & Pagiola, S. (2004). Agricultural intensification, local labor markets, and deforestation in the Philippines. Environment and Development Economics, 9, 241–266.CrossRefGoogle Scholar
  168. Singer, P. (2005) Who pays for bird flu? Project Syndicate, 10 November 2005.
  169. Smil, V. (2002). Eating meat: Evolution, patterns, and consequences. Population and Development Review, 28, 599–639.CrossRefGoogle Scholar
  170. Smith, D. H., Francis, D. P., Simpson, D. I. H., & Highton, R. B. (1978). The Nzara outbreak of viral haemorrhagic fever. In S. R. Pattyn (Ed.), Ebola Virus Haemorrhagic Fever Proceedings of an International Colloquium on Ebola Virus Infection and Other Haemorrhagic Fevers held in Antwerp, Belgium, 6–8 December, 1977. Amsterdam: Elsevier.Google Scholar
  171. Stanton, Emms & Sia (2010). The Philippines pig farming sector: A briefing for Canadian livestock genetics suppliers. Prepared for the Embassy of Canada in the Philippines and Office of Southeast Asia Regional Agri-Food Trade Commissioner Agriculture and Agri-Food Canada.
  172. Stark, K. D. C. (2000). Epidemiological investigation of the influence of environmental risk factors on respiratory diseases in swine: A literature review. Veterinary Journal, 159, 37–56.CrossRefGoogle Scholar
  173. Stechert, C., Kolb, M., Bahadir, M., Djossa, B. A., & Fahr, J. (2014). Insecticide residues in bats along a land use-gradient dominated by cotton cultivation in northern Benin, West Africa. Environmental Science and Pollution Research International, 21(14), 8812–8821. doi: 10.1007/s11356-014-2817-8.PubMedCrossRefGoogle Scholar
  174. Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M., & de Haan, C. (2006). Livestock’s Long Shadow. Environmental Issues and Options. Food and Agriculture Organization of the United Nations, Rome.Google Scholar
  175. Sun, Q., Matta, H., & Chaudhary, P. M. (2005). Kaposi’s sarcoma associated herpes virus-encoded viral FLICE inhibitory protein activates transcription from HIV-1 Long Terminal Repeat via the classical NF-kappaB pathway and functionally cooperates with Tat. Retrovirology, 2, 9.PubMedPubMedCentralCrossRefGoogle Scholar
  176. Taniguchi, S., Watanabe, S., Masangkay, J. S., Omatsu, T., Ikegami, T., Alviola, P., et al. (2011). Reston Ebolavirus antibodies in bats, the Philippines. Emerging Infectious Diseases, 17(8), 1559–1560. doi: 10.3201/eid1708.101693.PubMedPubMedCentralGoogle Scholar
  177. Tateyama, S., Molina, H. A., Uchida, K., Yamaguchi, R., & Manuel, M.F. (2000). An epizootiological survey of necropsy cases (1993-1997) at University of the Philippines. The Journal of Veterinary Medical Science, 62(4), 439–442.PubMedCrossRefGoogle Scholar
  178. Taylor, D. J., Leach, R. W., & Bruenn, J. (2010). Filoviruses are ancient and integrated into mammalian genomes. BMC Evolutionary Biology, 10, 193. doi: 10.1186/1471-2148-10-193.PubMedPubMedCentralCrossRefGoogle Scholar
  179. Taylor, P. J., Monadjem, A., & Steyn, J. N. (2013). Seasonal patterns of habitat use by insectivorous bats in a subtropical African agro-ecosystem dominated by macadamia orchards. African Journal of Ecology, 51(4), 552–561.CrossRefGoogle Scholar
  180. Tornatore, E., Buccellato, S., & Vetro, P. (2005). Stability of a stochastic SIR system. Physica A, 354 (11), 111–126.CrossRefGoogle Scholar
  181. Tuckwell, H., & Williams, R. (2007). Some properties of a simple stochastic epidemic model of SIR type. Mathematical Biosciences, 208, 76–97.PubMedCrossRefGoogle Scholar
  182. Van Boeckel, T. P. (2013). Intensive poultry production and highly pathogenic avian influenza H5N1 in Thailand: Statistical and process-based models. Ph.D. Thesis, Universite Libre de Bruxelles, School of Bioengineering.Google Scholar
  183. Van Boeckel, T. P., Thanapongtharm, W., Robinson, T., Biradar, C. M., Xiao, X., & Gilbert, M. (2012). Improving risk models for avian influenza: The role of intensive poultry farming and flooded land during the 2004 Thailand epidemic. PLoS One, 7(11), e49528.
  184. Verburg, P. H., & Veldkamp, A. (2004). Projecting land use transitions at forest fringes in the Philippines at two spatial scales. Landscape Ecology, 19, 77–98.CrossRefGoogle Scholar
  185. Wallace, R., Wallace D., Ullmann, J. E., & Andrews H. (1999). Deindustrialization, inner-city decay, and the hierarchical diffusion of AIDS in the USA: How neoliberal and cold war policies magnified the ecological niche for emerging infections and created a national security crisis. Environment and Planning A, 31, 113–139.CrossRefGoogle Scholar
  186. Wallace, R., Wallace, D., & Andrews, H. (1997). AIDS, tuberculosis, violent crime and low birthweight in eight US metropolitan regions: Public policy, stochastic resonance, and the regional diffusion of inner-city markers. Environment and Planning A, 29, 525–555.CrossRefGoogle Scholar
  187. Wallace, R. (2002). Immune cognition and vaccine strategy: Pathogenic challenge and ecological resilience. Open Systems and Information Dynamics, 9, 51. doi: 10.1023/A:1014282912635.CrossRefGoogle Scholar
  188. Wallace, R. (2014). Cognition and biology: Perspectives from information theory. Cognitive Processing, 15, 1–12.PubMedCrossRefGoogle Scholar
  189. Wallace, R. (2015). Noise and metabolic free energy in high-order biocognition. PeerJ PrePrints, 3, e774v1.
  190. Wallace, R., & Wallace, R. G. (2015). Blowback: New formal perspectives on agriculturally driven pathogen evolution and spread. Epidemiology and Infection, 143(10), 2068–2080.PubMedCrossRefGoogle Scholar
  191. Wallace, R. G. (2004). Projecting the impact of HAART on the evolution of HIV’s life history. Ecological Modelling, 176, 227–253.CrossRefGoogle Scholar
  192. Wallace, R. G. (2009). Breeding influenza: The political virology of offshore farming. Antipode, 41, 916–951.CrossRefGoogle Scholar
  193. Wallace, R. G. (2014, May 8). Collateralizing farmers. Farming Pathogens.
  194. Wallace, R. G., Bergmann, L., Hogerwerf, L., & Gilbert, M. (2010). Are influenzas in southern China byproducts of the region’s globalizing historical present? In T. Giles-Vernick, S. Craddock, & J. Gunn (Eds.), Influenza and Public Health: Learning from Past Pandemics. London: EarthScan Press.Google Scholar
  195. Wallace, R. G., Bergmann, L., Kock, R., Gilbert, M., Hogerwerf, L., Wallace, R., et al. (2015). The dawn of structural one health: A new science tracking disease emergence along circuits of capital. Social Science & Medicine, 129, 68–77.CrossRefGoogle Scholar
  196. Wallace, R. G., Gilbert, M., Wallace, R., Pittiglio, C., Mattioli R., & Kock R. (2014). Did Ebola emerge in West Africa by a policy-driven phase change in agroecology? Environment and Planning A, 46(11), 2533–2542.CrossRefGoogle Scholar
  197. Wallace, R. G., & Kock, R. A. (2012). Whose food footprint? Capitalism, agriculture and the environment. Human Geography, 5(1), 63–83.Google Scholar
  198. Walsh, P. D., Biek, R., & Real, L. A. (2005). Wave-Like Spread of Ebola Zaire. PLoS Biol, 3(11), e371. doi: 10.1371/journal.pbio.0030371.PubMedPubMedCentralCrossRefGoogle Scholar
  199. Washington, M. L., & Meltzer, M. L. (2015). Effectiveness of ebola treatment units and community care centers - Liberia, September 23-October 31, 2014. MMWR Morbidity and Mortality Weekly Report, 64(3), 67–69.PubMedGoogle Scholar
  200. Weingartl, H. M., Embury-Hyatt, C., Nfon, C., Leung, A., Smith, G., & Kobinger, G. (2012). Transmission of Ebola virus from pigs to non-human primates. Scientific Reports, 2, 811. doi: 10.1038/srep00811.PubMedPubMedCentralCrossRefGoogle Scholar
  201. Weingartl, H. M., Nfon, C., & Kobinger, G. (2013). Review of Ebola Virus infections in domestic animals. In J. A. Roth, J. A. Richt, & I. A. Morozov (Eds.), Vaccines and diagnostics for transboundary animal diseases. Developments in Biologicals (Vol. 135, pp. 211–218) Basel: Karger.Google Scholar
  202. Wertheim, J. O., & Pond, S. L. K. (2011). Purifying selection can obscure the ancient age of viral lineages. Molecular biology and evolution, 28(12), 3355–3365. doi: 10.1093/molbev/msr170.PubMedPubMedCentralCrossRefGoogle Scholar
  203. WHO (2009) WHO experts consultation on Ebola Reston pathogenicity in humans. Geneva, Switzerland. 1 April 2009. Available online at
  204. WHO Ebola Response Team (2014). Ebola virus disease in West Africa-the first 9 months of the epidemic and forward projections. The New England Journal of Medicine, 371, 1481–1495.CrossRefGoogle Scholar
  205. WHO/International Study Team (1978). Ebola haemorrhagic fever in Sudan, 1976. Bulletin of the World Health Organization, 56(2), 247–270.Google Scholar
  206. Widmer, G., & Akiyoshi, D. E. (2010). Host-specific segregation of ribosomal nucleotide sequence diversity in the microsporidian Enterocytozoon bieneusi. Infection, Genetics and Evolution, 10(1), 122–128. doi: 10.1016/j.meegid.2009.11.009.PubMedCrossRefGoogle Scholar
  207. Wilson, M. E., Levins, R., & Spielman, A. (Eds.) (1994). Disease in evolution: Global changes and emergence of infectious diseases. New York: Annals of the New York Academy of Sciences.Google Scholar
  208. Wolfe, N. D., Daszak, P., Kilpatrick, A. M., & Burke, D. S. (2005). Bushmeat hunting, deforestation, and prediction of zoonoses emergence. Emerging Infectious Diseases, 11(12), 1822–1827.PubMedPubMedCentralCrossRefGoogle Scholar
  209. Wolfe, N. D., Dunavan, C. P., & Diamond, J. (2007). Origins of major human infectious diseases. Nature, 447, 279–283.PubMedCrossRefGoogle Scholar
  210. Wood, J. L., Leach, M., Waldman, L., Macgregor, H., Fooks, A. R., Jones, K. E., et al. (2012). A framework for the study of zoonotic disease emergence and its drivers: Spillover of bat pathogens as a case study. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367(1604), 2881–2892. doi: 10.1098/rstb.2012.0228.PubMedPubMedCentralCrossRefGoogle Scholar
  211. Xu, W., Edwards, M. R., Borek, D. M., Feagins, A. R., & Mittal, A. (2014). Ebola virus VP24 targets a unique NLS binding site on Karyopherin Alpha 5 to selectively compete with nuclear import of phosphorylated STAT1. Cell Host Microbe, 13, 187–200.CrossRefGoogle Scholar
  212. Yuan, J. F., Zhang, Y. J., Li, J. L., Zhang, Y. Z., Wang, L. F., & Shi, Z. L. (2012). Serological evidence of ebolavirus infection in bats, China. Virology Journal, 9, 236. doi: 10.1186/1743-422X-9-236.PubMedPubMedCentralCrossRefGoogle Scholar
  213. Zhang, H., Kono, H., & Kubota, S. (2014). An integrated epidemiological and economic analysis of vaccination against Highly Pathogenic Porcine Reproductive and Respiratory Syndrome (PRRS) in Thua Thien Hue Province, Vietnam. Asian-Australasian Journal of Animal Sciences, 27(10), 1499–1512. doi: 10.5713/ajas.2014.14060.PubMedPubMedCentralCrossRefGoogle Scholar
  214. Zhang, W., Ricketts, T. H., Kreman, C., Carney, K., & Swinton, S. M. (2007). Ecosystem services and dis-services to agriculture. Ecological Economics, 64, 253–260. doi: 10.1016/j.ecolecon.2007.02.024.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Rodrick Wallace
    • 1
  • Luke Bergmann
    • 2
  • Lenny Hogerwerf
    • 3
  • Richard Kock
    • 4
  • Robert G. Wallace
    • 5
    Email author
  1. 1.Division of EpidemiologyThe New York State Psychiatric InstituteNew YorkUSA
  2. 2.Department of GeographyUniversity of WashingtonSeattleUSA
  3. 3.Centre for Infectious Disease ControlNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands
  4. 4.Pathology & Pathogen BiologyThe Royal Veterinary CollegeLondonUK
  5. 5.Institute for Global StudiesUniversity of MinnesotaMinneapolisUSA

Personalised recommendations