Skip to main content

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 58))

  • 1035 Accesses

Abstract

Among neural prostheses, cochlear implants (CIs) are considered the most successful devices. To date, they have benefited more than 324,000 patients with severe-to-profound hearing loss. CIs directly stimulate the auditory nerve and restore some hearing. Despite the great success of the devices, the outcomes in performance are variable. CI users often have difficulties in speech recognition in challenging listening environments and their perception of music is limited. It has been argued that performance correlates with the number of independent channels, which can be used to transmit information to the brain. While physical properties of the tissue result in a wide spread of the electrical current in contemporary devices and limit the number of independent channels, other modes of stimulation may provide an opportunity to increase spatial selectivity of neural stimulation and thus increase the number of independent channels for information transfer. An improvement in performance of the implant users is expected. This chapter provides an overview of the opportunities and the contemporary challenges of neural stimulation with light regarding auditory prostheses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acker, L., Huang, B., Hancock, K. E., Hauswirth, W., Boyden, E. S., et al. (2011). Channelrhodopsin-2 gene transfection of central auditory neurons: Toward an optical prosthesis. Abstracts of the Association for Research in Otolaryngology, 34, 484.

    Google Scholar 

  • Albert, E. S., Bec, J. M., Desmadryl, G., Chekroud, K., Travo, C., et al. (2012). TRPV4 channels mediate the infrared laser-evoked response in sensory neurons. Journal of Neurophysiology, 107, 3227–3234.

    Google Scholar 

  • Amoodi, H. A., Mick, P. T., Shipp, D. B., Friesen, L. M., Nedzelski, J. M., et al. (2012). Results with cochlear implantation in adults with speech recognition scores exceeding current criteria. Otology & Neurotology, 33, 6–12.

    Google Scholar 

  • Baker, C. A., Montey, K. L., Pongstaporn, T., & Ryugo, D. K. (2010). Postnatal development of the endbulb of held in congenitally deaf cats. Frontiers in Neuroanatomy, 4, 19.

    Google Scholar 

  • Balaban, C. D., Zhou, J., & Li, H. (2003). Type 1 vanilloid receptor expression by mammalian inner ear ganglion cells. Hearing Research, 175, 165–170.

    Google Scholar 

  • Balster, S., Wenzel, G. I., Warnecke, A., Steffens, M., Rettenmaier, A., et al. (2014). Optical cochlear implant: Evaluation of insertion forces of optical fibres in a cochlear model and of traumata in human temporal bones. Biomedizinische Technik/Biomedical Engineering, 59, 19–28.

    Google Scholar 

  • Baskent, D., & Shannon, R. V. (2005). Interactions between cochlear implant electrode insertion depth and frequency-place mapping. The Journal of the Acoustical Society of America, 117, 1405–1416.

    Google Scholar 

  • Baumhoff, P., Schultz, M., Kallweit, N., Krueger, A., Ripken, T., et al. (2013). Midbrain activity evoked by pulsed laser light. Poster 135, 2013 Conference on Implantable Auditory Prostheses, Lake Tahoe.

    Google Scholar 

  • Berndt, A., Yizhar, O., Gunaydin, L. A., Hegemann, P., & Deisseroth, K. (2009). Bi-stable neural state switches. Nature Neuroscience, 12, 229–234.

    Google Scholar 

  • Bernstein, J. G., Garrity, P. A., & Boyden, E. S. (2012). Optogenetics and thermogenetics: Technologies for controlling the activity of targeted cells within intact neural circuits. Current Opinion in Neurobiology, 22, 61–71.

    Google Scholar 

  • Boutros, P. J., Ahn, J., Fridman, G. Y., Dai, C., Lasker, D., & Della Santina, C. C. (2013). Vestibulo-ocular reflex eye movement responses to infra-red laser stimulation of the mammalian labyrinth. Abstracts of the Association for Research in Otolaryngology, 36, 255.

    Google Scholar 

  • Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., & Deisseroth, K. (2005). Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience, 8, 1263–1268.

    Google Scholar 

  • Caterina, M. J., Schumacher, M. A., Tominaga, M., Rosen, T. A., Levine, J. D., & Julius, D. (1997). The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature, 389, 816–824.

    Google Scholar 

  • Cox, D. B., Platt, R. J., & Zhang, F. (2015). Therapeutic genome editing: Prospects and challenges. Nature Medicine, 21, 121–131.

    Google Scholar 

  • Darrow, K., Slama, M., Kempfle, J., Boyden, E. S., Polley, D., et al. (2013a). Optogenetic control of central auditory neurons. Abstracts of the Association for Research in Otolaryngology, 36, 695.

    Google Scholar 

  • Darrow, K., Slama, M., Kempfle, J., Boyden, E. S., Polley, D., et al. (2013b). A comparison of electrical and optical activation of midbrain and cortical pathways in mice expressing channelrhodopsin-2 in the cochlear nucleus. Abstracts of the Association for Research in Otolaryngology, 36, 265.

    Google Scholar 

  • Della Santina, C. C., Migliaccio, A. A., Hayden, R., Melvin, T. A., Fridman, G. Y., et al. (2010). Current and future management of bilateral loss of vestibular sensation: An update on the Johns Hopkins Multichannel Vestibular Prosthesis Project. Cochlear Implants International, 11(Suppl. 2), 2–11.

    Google Scholar 

  • Dittami, G. M., Rajguru, S. M., Lasher, R. A., Hitchcock, R. W., & Rabbitt, R. D. (2011). Intracellular calcium transients evoked by pulsed infrared radiation in neonatal cardiomyocytes. Journal of Physiology, 589, 1295–1306.

    Google Scholar 

  • Feng, H. J., Kao, C., Gallagher, M. J., Jansen, E. D., Mahadevan-Jansen, A., et al. (2010). Alteration of GABAergic neurotransmission by pulsed infrared laser stimulation. Journal of Neuroscience Methods, 192, 110–114.

    Google Scholar 

  • Firszt, J. B., Koch, D. B., Downing, M., & Litvak, L. (2007). Current steering creates additional pitch percepts in adult cochlear implant recipients. Otology & Neurotology, 28, 629–636.

    Google Scholar 

  • Fishman, K. E., Shannon, R. V., & Slattery, W. H. (1997). Speech recognition as a function of the number of electrodes used in the SPEAK cochlear implant speech processor. Journal of Speech, Language, and Hearing Research, 40, 1201–1215.

    Google Scholar 

  • Fridberger, A., & Ren, T. (2006). Local mechanical stimulation of the hearing organ by laser irradiation. NeuroReport, 17, 33–37.

    Google Scholar 

  • Friedmann, D. R., Green, J., Fang, Y., Ensor, K., Roland, J. T., & Waltzman, S. B. (2015). Sequential bilateral cochlear implantation in the adolescent population. The Laryngoscope, 125(8), 1952–1958.

    Google Scholar 

  • Golub, J. S., Ling, L., Nie, K., Nowack, A., Shepherd, S. J., et al. (2014). Prosthetic implantation of the human vestibular system. Otology & Neurotology, 35, 136–147.

    Google Scholar 

  • Green, K. M., Ramsden, R. T., Julyan, P. J., & Hastings, D. E. (2008). Cortical plasticity in the first year after cochlear implantation. Cochlear Implants International, 9, 103–117.

    Google Scholar 

  • Grill, W. M., Norman, S. E., & Bellamkonda, R. V. (2009). Implanted neural interfaces: Biochallenges and engineered solutions. Annual Review of Biomedical Engineering, 11, 1–24.

    Google Scholar 

  • Güler, A. D., Lee, H., Iida, T., Shimizu, I., Tominaga, M., & Caterina, M. (2002). Heat-evoked activation of the ion channel, TRPV4. Journal of Neuroscience, 22, 6408–6414.

    Google Scholar 

  • Harris, D. M., Bierer, S. M., Wells, J. D., & Phillips, J. O. (2009). Optical nerve stimulation for a vestibular prosthesis. In Proceedings of SPIE 7180, Photons and neurons, 71800R.

    Google Scholar 

  • Hartmann, R., Topp, G., & Klinke, R. (1984). Discharge patterns of cat primary auditory fibers with electrical stimulation of the cochlea. Hearing Research, 13, 47–62.

    Google Scholar 

  • Hernandez, V. H., Gehrt, A., Reuter, K., Jing, Z., Jeschke, M., et al. (2014). Optogenetic stimulation of the auditory pathway. Journal of Clinical Investigation, 124, 1114–1129.

    Google Scholar 

  • Holstein, G. R., Martinelli, G. P., Boyle, R., Rabbitt, R. D., & Highstein, S. M. (2004a). Ultrastructural observations of efferent terminals in the crista ampullaris of the toadfish, Opsanus tau. Experimental Brain Research, 155, 265–273.

    Google Scholar 

  • Holstein, G. R., Rabbitt, R. D., Martinelli, G. P., Friedrich, V. L., Jr., Boyle, R. D., & Highstein, S. M. (2004b). Convergence of excitatory and inhibitory hair cell transmitters shapes vestibular afferent responses. Proceedings of the National Academy of Sciences of the USA, 101, 15766–15771.

    Google Scholar 

  • Izzo, A. D., Richter, C.-P., Jansen, E. D., & Walsh, J. T. (2006). Laser stimulation of the auditory nerve. Lasers in Surgery and Medicine, 38, 745–753.

    Google Scholar 

  • Izzo, A. D., Suh, E., Pathria, J., Walsh, J. T., Whitlon, D. S., & Richter, C. P. (2007a). Selectivity of neural stimulation in the auditory system: A comparison of optic and electric stimuli. Journal of Biomedical Optics, 12, 021008.

    Google Scholar 

  • Izzo, A. D., Walsh, J. T., Jansen, E. D., Bendett, M., et al. (2007b). Optical parameter variability in laser nerve stimulation: A study of pulse duration, repetition rate, and wavelength. IEEE Transactions on Biomedical Engineering, 54, 1108–1114.

    Google Scholar 

  • Izzo, A. D., Walsh, J. T., Ralph, H., Webb, J., Bendett, M., et al. (2008). Laser stimulation of auditory neurons at shorter pulse durations and penetration depths. Biophysical Journal, 94(8), 3159–3166.

    Google Scholar 

  • Jeschke, M., & Moser, T. (2015). Considering optogenetic stimulation for cochlear implants. Hearing Research, 322, 224–234.

    Google Scholar 

  • Katz, E. J., Ilev, I. K., Krauthamer, V., Kim do, H., & Weinreich, D. (2010). Excitation of primary afferent neurons by near-infrared light in vitro. NeuroReport, 21, 662–666.

    Google Scholar 

  • Limb, C. J. (2006). Cochlear implant-mediated perception of music. Current Opinion in Otolaryngology & Head and Neck Surgery, 14, 337–340.

    Google Scholar 

  • Limb, C. J., & Roy, A. T. (2014). Technological, biological, and acoustical constraints to music perception in cochlear implant users. Hearing Research, 308, 13–26.

    Google Scholar 

  • Limb, C. J., Molloy, A. T., Jiradejvong, P., & Braun, A. R. (2010). Auditory cortical activity during cochlear implant-mediated perception of spoken language, melody, and rhythm. Journal of the Association for Research in Otolaryngology, 11, 133–143.

    Google Scholar 

  • Littlefield, P., Izzo, A. D., Mundi, J., Walsh, J. T., Jansen, E.D., et al. (2008). Characterization of single auditory nerve fibers in response to laser stimulation. In Proceedings of SPIE 6854, Optical interactions with tissue and cells XIX, 68540F.

    Google Scholar 

  • Liu, L., Parekh-Olmedo, H., & Kmiec, E. B. (2003). The development and regulation of gene repair. Nature Reviews Genetics, 4, 679–689.

    Google Scholar 

  • Liu, Q., Jorgensen, E., Holman, H., Frerck, M., & Rabbitt, R. D. (2013). Miniature post synaptic currents are entrained by infrared pulses. Abstracts of the Association for Research in Otolaryngology, 36, 464.

    Google Scholar 

  • Liu, Q., Frerck, M. J., Holman, H. A., Jorgensen, E. M., & Rabbitt, R. D. (2014). Exciting cell membranes with a blustering heat shock. Biophysical Journal, 106, 1570–1577.

    Google Scholar 

  • Lumbreras, V., Finale, M., Bas, E., Gupta, C., & Rajguru, S. (2013). Pulsed infrared-evoked intracellular calcium transients in cultured neonatal spiral ganglion neurons. Abstracts of the Association for Research in Otolaryngology, 36, 341.

    Google Scholar 

  • Matic, A. I., Walsh, J. T., Jr., & Richter, C. P. (2011). Spatial extent of cochlear infrared neural stimulation determined by tone-on-light masking. Journal of Biomedical Optics, 16, 118002.

    Google Scholar 

  • Matic, A. I., Robinson, A. M., Young, H. K., Badofsky, B., Rajguru, S. M., et al. (2013). Behavioral and electrophysiological responses evoked by chronic infrared neural stimulation of the cochlea. PLoS ONE, 8, e58189.

    Google Scholar 

  • Moser, T. (2015). Optogenetic stimulation of the auditory pathway for research and future prosthetics. Current Opinion in Neurobiology, 34C, 29–36.

    Google Scholar 

  • Moser, T., Hernandez, V. H., Hoch, G., Reuter, K., Jing, Z., et al. (2013). Optogenetic stimulation of the auditory nerve. Abstracts of the Association for Research in Otolaryngology, 36, 268.

    Google Scholar 

  • Mukherjea, D., Ghosh, S., Bhatta, P., Sheth, S., Tupal, S., et al. (2015). Early investigational drugs for hearing loss. Expert Opinion on Investigational Drugs, 24, 201–217.

    Google Scholar 

  • Naito, Y., Tateya, I., Fujiki, N., Hirano, S., Ishizu, K., et al. (2000). Increased cortical activation during hearing of speech in cochlear implant users. Hearing Research, 143, 139–146.

    Google Scholar 

  • NIDCD Information Clearinghouse. (2015). Cochlear implants. NIH Publication 11-4798. https://www.nidcd.nih.gov/health/cochlear-implants.

  • Niemz, M. H. (2004). Laser–tissue interactions: Fundamentals and application, 2nd ed. New York: Springer Science + Business Media.

    Google Scholar 

  • Pezzoli, D., Chiesa, R., De Nardo, L., & Candiani, G. (2012). We still have a long way to go to effectively deliver genes! Journal of Applied Biomaterials & Functional Materials, 10, 82–91.

    Google Scholar 

  • Phillips, J. O., Ling, L., Nie, K., Jameyson, E., Phillips, C. M., et al. (2015). Vestibular implantation and longitudinal electrical stimulation of the semicircular canal afferents in human subjects. Journal of Neurophysiology, 113, 3866–3892.

    Google Scholar 

  • Rajguru, S. M., Rabbitt, R. D., Matic, A. I., Highstein, S. M., & Richter, C. P. (2010a). Selective activation of vestibular hair cells by infrared light. Biophysical Journal, 98, 507a.

    Google Scholar 

  • Rajguru, S. M., Rabbitt, R. R., Matic, A. I., Highstein, S. M., & Richter, C. P. (2010b). Inhibitory and excitatory vestibular afferent responses induced by infrared light stimulation of hair cells. Abstracts of the Association for Research in Otolaryngology, 33, 328.

    Google Scholar 

  • Redd, E. E., Pongstaporn, T., & Ryugo, D. K. (2000). The effects of congenital deafness on auditory nerve synapses and globular bushy cells in cats. Hearing Research, 147, 160–174.

    Google Scholar 

  • Redd, E. E., Cahill, H. B., Pongstaporn, T., & Ryugo, D. K. (2002). The effects of congenital deafness on auditory nerve synapses: Type I and type II multipolar cells in the anteroventral cochlear nucleus of cats. Journal of the Association for Research in Otolaryngology, 3, 403–417.

    Google Scholar 

  • Reiss, L. A., Turner, C. W., Karsten, S. A., Erenberg, S. R., Taylor, J., & Gantz, B. J. (2012). Consonant recognition as a function of the number of stimulation channels in the hybrid short-electrode cochlear implant. The Journal of the Acoustical Society of America, 132, 3406–3417.

    Google Scholar 

  • Rhee, A. Y., Li, G., Wells, J., & Kao, Y. P. Y. (2008). Photostimulation of sensory neurons of the rat vagus nerve. In S. L. Jacques, W. P. Roach, & R. J. Thomas (Eds.), Optical interactions with tissue and cells: Proceedings of SPIE 6854, Optical interactions with tissue and cells XIX, 68540E. San Francisco.

    Google Scholar 

  • Richter, C. P., & Tan, X. (2014). Photons and neurons. Hearing Research, 311, 72–88.

    Google Scholar 

  • Richter, C.-P., Bayon, R., Izzo, A. D., Otting, M., Suh, E., et al. (2008). Optical stimulation of auditory neurons: Effects of acute and chronic deafening. Hearing Research, 242, 42–51.

    Google Scholar 

  • Richter, C. P., Rajguru, S. M., Matic, A. I., Moreno, E. L., Fishman, A. J., et al. (2011). Spread of cochlear excitation during stimulation with pulsed infrared radiation: Inferior colliculus measurements. Journal of Neural Engineering, 8, 056006.

    Google Scholar 

  • Rubinstein, J. T. (2004). How cochlear implants encode speech. Current Opinion in Otolaryngology & Head and Neck Surgery, 12, 444–448.

    Google Scholar 

  • Ryugo, D. K., Pongstaporn, T., Huchton, D. M., & Niparko, J. K. (1997). Ultrastructural analysis of primary endings in deaf white cats: Morphologic alterations in endbulbs of Held. Journal of Comparative Neurology, 385, 230–244.

    Google Scholar 

  • Saada, A. A., Niparko, J. K., & Ryugo, D. K. (1996). Morphological changes in the cochlear nucleus of congenitally deaf white cats. Brain Research, 736, 315–328.

    Google Scholar 

  • Schultz, M., Baumhoff, P., Teudt, I. U., Maier, H., Kruger, A., et al. (2012a). Pulsed wavelength-dependent laser stimulation of the inner ear. Biomedizinische Technik/Biomedical Engineering, 57(Suppl 1), doi:10.1515/bmt-2012-4339.

  • Schultz, M., Baumhoff, P., Maier, H., Teudt, I. U., Kruger, A., et al. (2012b). Nanosecond laser pulse stimulation of the inner ear-a wavelength study. Biomedical Optics Express, 3, 3332–3345.

    Google Scholar 

  • Shannon, R. V. (2005). Speech and music have different requirements for spectral resolution. International Review of Neurobiology, 70, 121–134.

    Google Scholar 

  • Shannon, R. V., Galvin, J. J., 3rd, & Baskent, D. (2002). Holes in hearing. Journal of the Association for Research in Otolaryngology, 3, 185–199.

    Google Scholar 

  • Shannon, R. V., Fu, Q. J., & Galvin, J., 3rd. (2004). The number of spectral channels required for speech recognition depends on the difficulty of the listening situation. Acta Oto-Laryngologica Supplementum, 552, 50–54.

    Google Scholar 

  • Shapiro, M. G., Homma, K., Villarreal, S., Richter, C. P., & Bezanilla, F. (2012). Infrared light excites cells by changing their electrical capacitance. Nature Communications, 3, 736.

    Google Scholar 

  • Shepherd, R. K., & Hardie, N. A. (2001). Deafness-induced changes in the auditory pathway: Implications for cochlear implants. Audiology and Neurotology, 6, 305–318.

    Google Scholar 

  • Snel-Bongers, J., Briaire, J. J., Vanpoucke, F. J., & Frijns, J. H. (2012). Spread of excitation and channel interaction in single- and dual-electrode cochlear implant stimulation. Ear and Hearing, 33, 367–376.

    Google Scholar 

  • Takumida, M., Kubo, N., Ohtani, M., Suzuka, Y., & Anniko, M. (2005). Transient receptor potential channels in the inner ear: Presence of transient receptor potential channel subfamily 1 and 4 in the guinea pig inner ear. Acta Oto-Laryngologica, 125, 929–934.

    Google Scholar 

  • Teudt, I. U., Maier, H., Richter, C. P., & Kral, A. (2011). Acoustic events and “optophonic” cochlear responses induced by pulsed near-infrared laser. IEEE Transactions on Biomedical Engineering, 58, 1648–1655.

    Google Scholar 

  • Thompson, A. C., Fallon, J. B., Wise, A. K., Wade, S. A., Shepherd, R. K., & Stoddart, P. R. (2015). Infrared neural stimulation fails to evoke neural activity in the deaf guinea pig cochlea. Hearing Research, 324, 46–53.

    Google Scholar 

  • Tirko, N. N., & Ryugo, D. K. (2012). Synaptic plasticity in the medial superior olive of hearing, deaf, and cochlear-implanted cats. Journal of Comparative Neurology, 520, 2202–2217.

    Google Scholar 

  • Truy, E., Deiber, M. P., Cinotti, L., Mauguiere, F., Froment, J. C., & Morgon, A. (1995). Auditory cortex activity changes in long-term sensorineural deprivation during crude cochlear electrical stimulation: Evaluation by positron emission tomography. Hearing Research, 86, 34–42.

    Google Scholar 

  • Tuchin, V. (2000). Tissue optics: Light scattering methods and instruments for medical diagnosis. Bellingham, WA: SPIE Press.

    Google Scholar 

  • van den Honert, C., & Stypulkowski, P. H. (1984). Physiological properties of the electrically stimulated auditory nerve. II. Single fiber recordings. Hearing Research, 14, 225–243.

    Google Scholar 

  • Welch, A. J., & van Gemert, M. J. C. (2012). Optical-thermal response of laser-irradiated tissue, 2nd ed. New York: Plenum Press,

    Google Scholar 

  • Wells, J., Kao, C., Konrad, P., Milner, T., Kim, J., et al. (2007). Biophysical mechanisms of transient optical stimulation of peripheral nerve. Biophysical Journal, 93, 2567–2580.

    Google Scholar 

  • Wenzel, G. I., Balster, S., Zhang, K., Lim, H. H., Reich, U., et al. (2009). Green laser light activates the inner ear. Journal of Biomedical Optics, 14, 044007.

    Google Scholar 

  • Wilson, B. S., & Dorman, M. F. (2008). Cochlear implants: Current designs and future possibilities. Journal of Rehabilitation Research and Development, 45, 695–730.

    Google Scholar 

  • Wong, D., Miyamoto, R. T., Pisoni, D. B., Sehgal, M., & Hutchins, G. D. (1999). PET imaging of cochlear-implant and normal-hearing subjects listening to speech and nonspeech. Hearing Research, 132, 34–42.

    Google Scholar 

  • Xia, N., Tan, X., Young, H., Dummer, M., Hibbs-Brenner, M., & Richter, C.-P. (2015). Multichannel optrode for optical stimulation. Abstracts of the Association for Research in Otolaryngology, 38, 108.

    Google Scholar 

  • Yizhar, O., Fenno, L. E., Davidson, T. J., Mogri, M., & Deisseroth, K. (2011). Optogenetics in neural systems. Neuron, 71, 9–34.

    Google Scholar 

  • Young, H. K., Tan, X., Xia, N., & Richter, C. P. (2015). Target structures for cochlear infrared neural stimulation. Neurophotonics, 2, 025002.

    Google Scholar 

  • Zeng, F.-G., Tang, Q., & Lu, T. (2014). Abnormal pitch perception produced by cochlear implant stimulation. PLoS ONE, 9, e88662.

    Google Scholar 

  • Zhang, F., Wang, L. P., Boyden, E. S., & Deisseroth, K. (2006). Channelrhodopsin-2 and optical control of excitable cells. Nature Methods, 3, 785–792.

    Google Scholar 

  • Zhang, K. Y., Wenzel, G. I., Balster, S., Lim, H. H., Lubatschowski, H., et al. (2009). Optoacoustic induced vibrations within the inner ear. Optics Express, 17, 23037–23043.

    Google Scholar 

  • Zheng, J., Dai, C., Steyger, P. S., Kim, Y., Vass, Z., et al. (2003). Vanilloid receptors in hearing: Altered cochlear sensitivity by vanilloids and expression of TRPV1 in the organ of Corti. Journal of Neurophysiology, 90, 444–455.

    Google Scholar 

Download references

Acknowledgments

This work has been funded by the NIDCD, R01-DC011855.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus-Peter Richter .

Editor information

Editors and Affiliations

Additional information

Compliance with Ethics Requirements

Xiaodong Tan declares that he has no conflict of interest.

Nan Xia declares that she has no conflict of interest. Nan Xia was supported bu the China scholarship council.

Claus-Peter Richter is the founding Chief technology Officer (CTO) of Resonance Medical, LLC, and is inventor on several patents pertaining to optical stimulation and the design of optical implant electrodes.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tan, X., Xia, N., Richter, CP. (2016). Photons in the Ear. In: Le Prell, C., Lobarinas, E., Popper, A., Fay, R. (eds) Translational Research in Audiology, Neurotology, and the Hearing Sciences. Springer Handbook of Auditory Research, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-319-40848-4_9

Download citation

Publish with us

Policies and ethics