Skip to main content

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 58))

Abstract

Translational research encompasses a spectrum beginning with basic scientific inquiry, extending into applied assessment in clinical trial evaluations, and ultimately extending to clinical application and assessment of the impact on public health. Translational research occurs at the boundaries between each of these steps, with specific activities required to move from basic science into clinical testing (translation 1, T1), from clinical testing into clinical best practice guidelines (translation 2, T2), from guidelines into healthcare practice (translation 3, T3), and from clinical practice into public health benefit (translation 4, T4). This volume on translational research introduces scientists and clinicians to this process via specific examples across current “hot topics” in auditory research. Among the topics are examples from central auditory processing disorder, sudden hearing loss, noise-induced hearing loss, tinnitus, cisplatin-induced hearing loss, molecular therapies for hair cell regeneration, and next-generation novel cochlear implant devices relying on optical stimulation. A brief review of each chapter is included here. Across the chapters, readers will appreciate the current state of the science, a review of current clinical practices, and emerging evidence-based interventions with the overarching goal of providing interested parties with a reference highlighting the process, challenges, and rewards of translational research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas, P. J., & Miller, C. A. (2004). Biophysics and physiology. In F.-G. Zeng, A. N. Popper, & R. R. Fay (Eds.), Cochlear implants: Auditory prostheses and electric hearing (pp. 149–212). New York: Springer Science + Business Media.

    Google Scholar 

  • American Academy of Audiology (AAA). (2009). Position statement and clinical practice guidelines: Ototoxicity monitoring. http://www.audiology.org/resources/documentlibrary/Pages/OtotoxicityMonitoring.aspx. Accessed October 30, 2012.

  • American Speech-Language-Hearing Association (ASHA). (1994). Guidelines for the audiologic management of individuals receiving cochleotoxic drug therapy. ASHA, 36(Suppl. 12), 11–19.

    Google Scholar 

  • Anderson, J. M., & Campbell, K. (2015). Assessment of interventions to prevent drug-induced hearing loss. In J. M. Miller, C. G. Le Prell, & L. P. Rybak (Eds.), Oxidative stress in applied basic research and clinical practice: Free radicals in ENT pathology (pp. 243–269). New York: Humana Press.

    Google Scholar 

  • Bellis, T. J., Chermak, G. D., Weihing, J., & Musiek, F. E. (2012). Efficacy of auditory interventions for central auditory processing disorder: A response to Fey et al. (2011). Language, Speech, and Hearing Services in Schools, 43(3), 381–386.

    Google Scholar 

  • Bhowmik, D., Chandira, M., & Chiranjib, B. (2010). Emerging trends of scope and opportunities clinical trials in India. International Journal of Pharmacy and Pharmaceutical Sciences, 2(1), 7–20.

    Google Scholar 

  • Bierer, J. A., & Middlebrooks, J. C. (2002). Auditory cortical images of cochlear-implant stimuli: Dependence on electrode configuration. The Journal of Neurophysiology, 87(1), 478–492.

    Google Scholar 

  • Bierer, J. A., Bierer, S. M., & Middlebrooks, J. C. (2010). Partial tripolar cochlear implant stimulation: Spread of excitation and forward masking in the inferior colliculus. Hearing Research, 270(1–2), 134–142.

    Google Scholar 

  • Butler, D. (2008). Translational research: Crossing the valley of death. Nature, 453(7197), 840–842.

    Google Scholar 

  • Campbell, K. C. M. (2001). Therapeutic use of D-methionine to reduce the toxicity of ototoxic drugs, noise, and radiation. US Patent No. 6,265,386. United States Patent Trademark Office.

    Google Scholar 

  • Campbell, K. C. M. (2008). Therapeutic use of methionine-derivitives to reduce the toxicity of noise. US Patent No. 7,423,065. United States Patent Trademark Office.

    Google Scholar 

  • Campbell, K. C. M. (2014). The role of pharmaceutical agents in hearing loss management and prevention. Presented at the Academy of Doctors of Audiology (ADA) 2014 Convention, November 6–9, 2014, Las Vegas, NV. http://www.audiologist.org/_resources/2014_convention__presentations/Campbell.pdf. Accessed September 22, 2015.

  • Chien, W. W., Monzack, E. L., McDougald, D. S., & Cunningham, L. L. (2015). Gene therapy for sensorineural hearing loss. Ear and Hearing, 36(1), 1–7.

    Google Scholar 

  • Clopton, B. M., & Spelman, F. A. (1982). Neural mechanisms relevant to the design of an auditory prosthesis. Location and electrical characteristics. Annals of Otology, Rhinology, and Laryngology (Supplement), 98, 9–14.

    Google Scholar 

  • Cooke, N. J., and Hilton, M. L. (Eds.); Committee on the Science of Team Science; Board on Behavioral, Cognitive, and Sensory Sciences; Division of Behavioral and Social Sciences and Education; National Research Council. (2015). Enhancing the effectiveness of team science. Washington, DC: National Academies Press.

    Google Scholar 

  • Corwin, J. T., & Cotanche, D. A. (1988). Regeneration of sensory hair cells after acoustic trauma. Science, 240(4860), 1772–1774.

    Google Scholar 

  • Cotanche, D. A. (1987a). Regeneration of hair cell stereociliary bundles in the chick cochlea following severe acoustic trauma. Hearing Research, 30(2–3), 181–195.

    Google Scholar 

  • Cotanche, D. A. (1987b). Regeneration of the tectorial membrane in the chick cochlea following severe acoustic trauma. Hearing Research, 30(2–3), 197–206.

    Google Scholar 

  • Crane, R. A., Camilon, M., Nguyen, S., & Meyer, T. A. (2015). Steroids for treatment of sudden sensorineural hearing loss: A meta-analysis of randomized controlled trials. Laryngoscope, 125(1), 209–217.

    Google Scholar 

  • De Ridder, D., Vanneste, S., Elgoyhen, A. B., Langguth, B., & de Nora, M. (2015). All treatments in tinnitus are experimental, controversial, and futuristic: A comment on “Experimental, controversial, and futuristic treatments for chronic tinnitus” by Folmer et al. (2014). Journal of the American Academy of Audiology, 26(6), 595–597.

    Google Scholar 

  • Dobie, R. A. (1999). A review of randomized clinical trials in tinnitus. Laryngoscope, 109(8), 1202–1211.

    Google Scholar 

  • Duckert, L. G., & Miller, J. M. (1984). Morphological changes following cochlear implantation in the animal model. Acta Oto-Laryngologica Supplementum, 411, 28–37.

    Google Scholar 

  • Duckert, L. G., & Miller, J. M. (1986). Mechanisms of electrically induced damage after cochlear implantation. Annals of Otology, Rhinology, and Laryngology, 95(2 Pt 1), 185–189.

    Google Scholar 

  • Emmert-Buck, M. R. (2011). An NIH intramural percubator as a model of academic-industry partnerships: From the beginning of life through the valley of death. Journal of Translational Medicine, 9, 54.

    Google Scholar 

  • Eshraghi, A. A., Nazarian, R., Telischi, F. F., Rajguru, S. M., Truy, E., & Gupta, C. (2012). The cochlear implant: Historical aspects and future prospects. Anatomical Record, 295(11), 1967–1980.

    Google Scholar 

  • Farhadi, M., Jalessi, M., Salehian, P., Ghavi, F. F., Emamjomeh, H., et al. (2013). Dexamethasone eluting cochlear implant: Histological study in animal model. Cochlear Implants International, 14(1), 45–50.

    Google Scholar 

  • Fey, M. E., Richard, G. J., Geffner, D., Kamhi, A. G., Medwetsky, L., et al. (2011). Auditory processing disorder and auditory/language interventions: An evidence-based systematic review. Language, Speech, and Hearing Services in Schools, 42(3), 246–264.

    Google Scholar 

  • Filipo, R., Attanasio, G., Russo, F. Y., Viccaro, M., Mancini, P., & Covelli, E. (2013). Intratympanic steroid therapy in moderate sudden hearing loss: A randomized, triple-blind, placebo-controlled trial. Laryngoscope, 123(3), 774–778.

    Google Scholar 

  • Folmer, R. L., Theodoroff, S. M., Martin, W. H., & Shi, Y. (2014). Experimental, controversial, and futuristic treatments for chronic tinnitus. Journal of the American Academy of Audiology, 25(1), 106–125.

    Google Scholar 

  • Fujioka, M., Okano, H., & Edge, A. S. (2015). Manipulating cell fate in the cochlea: A feasible therapy for hearing loss. Trends in Neurosciences, 38(3), 139–144.

    Google Scholar 

  • Geleoc, G. S., & Holt, J. R. (2014). Sound strategies for hearing restoration. Science, 344(6184), 1241062.

    Google Scholar 

  • Giordano, P., Hatzopoulos, S., Giarbini, N., Prosser, S., Petruccelli, J., et al. (2014). A soft-surgery approach to minimize hearing damage caused by the insertion of a cochlear implant electrode: A guinea pig animal model. Otology & Neurotology, 35(8), 1440–1445.

    Google Scholar 

  • Gwon, T. M., Min, K. S., Kim, J. H., Oh, S. H., Lee, H. S., et al. (2015). Fabrication and evaluation of an improved polymer-based cochlear electrode array for atraumatic insertion. Biomedical Microdevices, 17(2), 32.

    Google Scholar 

  • Hammonds, T. (2015). Academic-Pharma drug discovery alliances: Seeking ways to eliminate the valley of death. Future Medicinal Chemistry, 7(14), 1891–1899.

    Google Scholar 

  • Hartmann, R., & Kral, A. (2004). Central responses to electrical stimulation. In F.-G. Zeng, A. N. Popper, & R. R. Fay (Eds.), Cochlear implants: Auditory prostheses and electric hearing (pp. 213–285). New York: Springer Science + Business Media.

    Google Scholar 

  • Hendricks, J. L., Chikar, J. A., Crumling, M. A., Raphael, Y., & Martin, D. C. (2008). Localized cell and drug delivery for auditory prostheses. Hearing Research, 242(1–2), 117–131.

    Google Scholar 

  • Hudson, J., & Khazragui, H. F. (2013). Into the valley of death: Research to innovation. Drug Discovery Today, 18(13–14), 610–613.

    Google Scholar 

  • Izumikawa, M., Minoda, R., Kawamoto, K., Abrashkin, K. A., Swiderski, D. L., et al. (2005). Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nature Medicine, 11(3), 271–276.

    Google Scholar 

  • Khanna, I. (2012). Drug discovery in pharmaceutical industry: Productivity challenges and trends. Drug Discovery Today, 17(19–20), 1088–1102.

    Google Scholar 

  • Kil, J., & Lynch, E. (2004). Methods for treating hearing loss. US Patent No. 6,815,434. United States Patent Trademark Office.

    Google Scholar 

  • Kil, J., & Lynch, E. (2010). Methods for treating hearing loss. US Patent No. 7,820,640. United States Patent Trademark Office.

    Google Scholar 

  • Kil, J., & Lynch, E. (2012). Methods and compostions for ameliorating the undesirable effects of chemotherapy. US Patent No. 8,309,560. United States Patent Trademark Office.

    Google Scholar 

  • Kneller, R., Mongeon, M., Cope, J., Garner, C., & Ternouth, P. (2014). Industry-university collaborations in Canada, Japan, the UK and USA—with emphasis on publication freedom and managing the intellectual property lock-up problem. PLoS ONE, 9(3), e90302.

    Google Scholar 

  • Knoepfler, P. S. (2015). From bench to FDA to bedside: US regulatory trends for new stem cell therapies. Advanced Drug Delivery Reviews, 8283, 192–196.

    Google Scholar 

  • Lavigne, P., Lavigne, F., & Saliba, I. (2015). Intratympanic corticosteroids injections: A systematic review of literature. European Archives of Oto-Rhino-Laryngology, Published online 23 June 2015; doi: 10.1007/s00405-015-3689-3.

    Google Scholar 

  • Leake, P. A., & Rebscher, S. J. (2004). Anatomical considerations and long-term effects of electrical stimulation. In F.-G. Zeng, A. N. Popper, & R. R. Fay (Eds.), Cochlear implants: Auditory prostheses and electric hearing (pp. 101–148). New York: Springer Science + Business Media.

    Google Scholar 

  • Manson, S. M., Martinez, D. F., Buchwald, D. S., Rubio, D. M., & Moss, M. (2015). Vision, identity, and career in the clinical and translational sciences: Building upon the formative years. Clinical and Translational Science, 8(5), 568–572.

    Google Scholar 

  • Meslin, E. M., Blasimme, A., & Cambon-Thomsen, A. (2013). Mapping the translational science policy ‘valley of death’. Clinical and Translational Medicine, 2(1), 14.

    Google Scholar 

  • Middlebrooks, J. C. (2004). Effects of cochlear-implant pulse rate and inter-channel timing on channel interactions and thresholds. Journal of the Acoustical Society of America, 116(1), 452–468.

    Google Scholar 

  • Middlebrooks, J. C. (2008). Cochlear-implant high pulse rate and narrow electrode configuration impair transmission of temporal information to the auditory cortex. Journal of Neurophysiology, 100(1), 92–107.

    Google Scholar 

  • Middlebrooks, J. C., & Bierer, J. A. (2002). Auditory cortical images of cochlear-implant stimuli: Coding of stimulus channel and current level. The Journal of Neurophysiology, 87(1), 493–507.

    Google Scholar 

  • Miller, J. M., Duckert, L. G., Malone, M. A., & Pfingst, B. E. (1983). Cochlear prostheses: Stimulation-induced damage. Annals of Otology, Rhinology, and Laryngology, 92(6 Pt 1), 599–609.

    Google Scholar 

  • Miller, R. C. J. (1995). University–industry collaboration. The American Journal of Medicine, 99(Suppl 6A), 6A-90S–96A-92S.

    Google Scholar 

  • Munos, B. (2009). Lessons from 60 years of pharmaceutical innovation. Nature Reviews Drug Discovery, 8(12), 959–968.

    Google Scholar 

  • NCT00097448. Sudden deafness treatment trial (SSNHL). http://clinicaltrials.gov/ct2/show/NCT00097448. Accessed October 2, 2015.

  • NCT00808470. Micronutrients to prevent noise-induced hearing loss. http://clinicaltrials.gov/ct2/show/NCT00808470. Accessed May 8, 2012.

  • NCT01444846. Otoprotection with SPI-1005. http://clinicaltrials.gov/ct2/show/NCT01444846. Accessed January 11, 2013.

  • NCT02132130. Safety, tolerability and efficacy for CGF166 in patients with bilateral severe-to-profound hearing loss. http://clinicaltrials.gov/ct2/show/NCT02132130. Accessed August 4, 2015.

  • Nelsen, L. L. (2004). A US perspective on technology transfer: The changing role of the university. Nature, 5, 1–5.

    Google Scholar 

  • Ng, J. H., Ho, R. C., Cheong, C. S., Ng, A., Yuen, H. W., & Ngo, R. Y. (2015). Intratympanic steroids as a salvage treatment for sudden sensorineural hearing loss? A meta-analysis. European Archives of Oto-Rhino-Laryngology, 272(10), 2777–2782.

    Google Scholar 

  • Nguyen, Y., Couloigner, V., Rudic, M., Nguyen, Y., Couloigner, V., et al. (2009). An animal model of cochlear implantation with an intracochlear fluid delivery system. Acta Oto-Laryngologica, 129(11), 1153–1159.

    Google Scholar 

  • Niemiec, A. J., Raphael, Y., & Moody, D. B. (1994). Return of auditory function following structural regeneration after acoustic trauma: Behavioral measures from quail. Hearing Research, 79(1–2), 1–16.

    Google Scholar 

  • Nobel, W. (2012). Evidence about the effectiveness of treatments related to tinnitus. In L. Wong & L. Hickson (Eds.), Evidence-based practice in audiology: Evaluating interventions for children and adults with hearing impairment (pp. 267–282). San Diego: Plural Publishing.

    Google Scholar 

  • O’Leary, S. J., Monksfield, P., Kel, G., Connolly, T., Souter, M. A., et al. (2013). Relations between cochlear histopathology and hearing loss in experimental cochlear implantation. Hearing Research, 298, 27–35.

    Google Scholar 

  • Pfingst, B. E., Colesa, D. J., Hembrador, S., Kang, S. Y., Middlebrooks, J. C., et al. (2011). Detection of pulse trains in the electrically stimulated cochlea: Effects of cochlear health. The Journal of the Acoustical Society of America, 130(6), 3954–3968.

    Google Scholar 

  • Pienta, K. J. (2010). Successfully accelerating translational research at an academic medical center: The University of Michigan–Coulter translational research partnership program. Clinical and Translational Science, 3(6), 316–318.

    Google Scholar 

  • Rauch, S. D. (2008). Clinical practice. Idiopathic sudden sensorineural hearing loss. New England Journal of Medicine, 359(8), 833–840.

    Google Scholar 

  • Rauch, S. D. (2015). Clinical trials in acute hearing loss. Presented at Rational Pharmacotherapy for Acute Hearing Loss—Recent Advances and Perspectives, a corporate symposium sponsored by Auris Medical, September 28, 2015, Dallas, TX.

    Google Scholar 

  • Richardson, R. T., & Atkinson, P. J. (2015). Atoh1 gene therapy in the cochlea for hair cell regeneration. Expert Opinion on Biological Therapy, 15(3), 417–430.

    Google Scholar 

  • Richardson, R. T., Wise, A. K., Thompson, B. C., Flynn, B. O., Atkinson, P. J., et al. (2009). Polypyrrole-coated electrodes for the delivery of charge and neurotrophins to cochlear neurons. Biomaterials, 30(13), 2614–2624.

    Google Scholar 

  • Roberts, S. F., Fischhoff, M. A., Sakowski, S. A., & Feldman, E. L. (2012). Perspective: Transforming science into medicine: How clinician-scientists can build bridges across research’s “valley of death.” Academic Medicine, 87(3), 266–270.

    Google Scholar 

  • Robinson, G. F., Erlen, J. A., Rubio, D. M., Kapoor, W. N., & Poloyac, S. M. (2013). Development, implementation, and evaluation of an interprofessional course in translational research. Clinical and Translational Science, 6(1), 50–56.

    Google Scholar 

  • Rogowski, M., Reiss, G., & Lehnhardt, E. (1995). Morphologic study of the guinea pig cochlea after cochlear implantation using the “soft surgery” technique. Annals of Otology, Rhinology, and Laryngology Supplement, 166, 434–436.

    Google Scholar 

  • Ryals, B. M., & Rubel, E. W. (1988). Hair cell regeneration after acoustic trauma in adult Coturnix quail. Science, 240(4860), 1774–1776.

    Google Scholar 

  • Saunders, J. C., Cohen, Y. E., & Szymko, Y. M. (1991). The structural and functional consequences of acoustic injury in the cochlea and peripheral auditory system: A five year update. The Journal of the Acoustical Society of America, 90(1), 136–146.

    Google Scholar 

  • Shankar, S. K. (2015). Let us promote bio-banking in India for translational research. Neurology India, 63(5), 644–646.

    Google Scholar 

  • Singh, H., & Srivastva, A. (2013). Recent trends in scope and opportunity of clinical research in India. Indian Journal of Research in Pharmacy and Biotechnology, 1(3), 299–304.

    Google Scholar 

  • Snyder, R. L., Bierer, J. A., & Middlebrooks, J. C. (2004). Topographic spread of inferior colliculus activation in response to acoustic and intracochlear electric stimulation. Journal of the Association for Research in Otolaryngology, 5(3), 305–322.

    Google Scholar 

  • Spelman, F. A., Clopton, B. M., & Pfingst, B. E. (1982). Tissue impedance and current flow in the implanted ear. Implications for the cochlear prosthesis. Annals of Otology, Rhinology, and Laryngology Supplement, 98, 3–8.

    Google Scholar 

  • Stokols, D., Hall, K. L., Taylor, B. K., & Moser, R. P. (2008). The science of team science: Overview of the field and introduction to the supplement. American Journal of Preventive Medicine, 35(2 Suppl), S77–S89.

    Google Scholar 

  • Tralau-Stewart, C. J., Wyatt, C. A., Kleyn, D. E., & Ayad, A. (2009). Drug discovery: New models for industry-academic partnerships. Drug Discovery Today, 14(1–2), 95–101.

    Google Scholar 

  • Tykocinski, M., & Cowan, R. S. (2005). Poly-vinyl-alcohol (PVA) coating of cochlear implant electrode arrays: An in-vivo biosafety study. Cochlear Implants International, 6(1), 16–30.

    Google Scholar 

  • Wei, B. P., Stathopoulos, D., & O’Leary, S. (2013). Steroids for idiopathic sudden sensorineural hearing loss. Cochrane Database of Systematic Reviews, 7, Cd003998.

    Google Scholar 

  • Wilson, B. S. (2004). Engineering design of cochlear implants. In F.-G. Zeng, A. N. Popper, & R. R. Fay (Eds.), Cochlear implants: Auditory prostheses and electric hearing (pp. 14–52). New York: Springer Science + Business Media.

    Google Scholar 

  • Wilson, W. J., & Arnott, W. (2012). Evidence of the effectiveness of interventions for auditory procesing disorder. In L. Wong & L. Hickson (Eds.), Evidence-based practice in audiology: Evaluating interventions for children and adults with hearing impairment (pp. 283–307). San Diego: Plural Publishing.

    Google Scholar 

  • Wong, T. Y. (2014). How to bridge the “valley of death” between a research discovery and clinical application? Annals of the Academy of Medicine, Singapore, 43(8), 422–424.

    Google Scholar 

  • Zeng, F.-G. (2004). Auditory prostheses: Past, present, and future. In F.-G. Zeng, A. N. Popper, & R. R. Fay (Eds.), Cochlear implants: Auditory prostheses and electric hearing (pp. 1–13). New York: Springer Science + Business Media.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colleen G. Le Prell .

Editor information

Editors and Affiliations

Additional information

Compliance with Ethics Requirements

Colleen Le Prell has received contract funding from industry sources including Sound Pharmaceuticals, Inc., Edison Pharmaceuticals, Inc., Hearing Health Sciences, Inc., and MaxSound, Inc. She is a co-inventor on patents assigned to the University of Michigan and the University of Florida.

Edward Lobarinas declares no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Le Prell, C.G., Lobarinas, E. (2016). Perspectives on Auditory Translational Research. In: Le Prell, C., Lobarinas, E., Popper, A., Fay, R. (eds) Translational Research in Audiology, Neurotology, and the Hearing Sciences. Springer Handbook of Auditory Research, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-319-40848-4_1

Download citation

Publish with us

Policies and ethics