Skip to main content

Recent Advances in Fluid–Structure Interaction Simulations of Wind Turbines

  • Chapter
  • First Online:
Advances in Computational Fluid-Structure Interaction and Flow Simulation
  • 3102 Accesses

Abstract

In this chapter the numerical challenges of simulating aerodynamics and fluid–structure interaction (FSI) of wind turbines are summarized, and the recently developed computational methods that address these challenges are presented. Several wind-turbine computations at full scale and with full complexity of the geometry and material composition are presented, which illustrate the accuracy, robustness, and general applicability of the methods developed for this problem class.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Augier, B., Yan, J., Korobenko, A., Czarnowski, J., Ketterman, G., Bazilevs, Y.: Experimental and numerical FSI study of compliant hydrofoils. Comput. Mech. 55, 1079–1090 (2015)

    Article  Google Scholar 

  2. Bazilevs, Y., Hughes, T.J.R.: Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput. Fluids 36, 12–26 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bazilevs, Y., Hughes, T.J.R.: NURBS-based isogeometric analysis for the computation of flows about rotating components. Comput. Mech. 43, 143–150 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bazilevs, Y., Michler, C., Calo, V.M., Hughes, T.J.R.: Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes. Comput. Methods Appl. Mech. Eng. 199, 780–790 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bazilevs, Y., Hsu, M.-C., Akkerman, I., Wright, S., Takizawa, K., Henicke, B., Spielman, T., Tezduyar, T.E.: 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics. Int. J. Numer. Methods Fluids 65, 207–235 (2011)

    MATH  Google Scholar 

  6. Bazilevs, Y., Hsu, M.-C., Kiendl, J., Wüchner, R., Bletzinger, K.-U.: 3D simulation of wind turbine rotors at full scale. Part II: fluid–structure interaction modeling with composite blades. Int. J. Numer. Methods Fluids 65, 236–253 (2011)

    MATH  Google Scholar 

  7. Bazilevs, Y., Hsu, M.-C., Kiendl, J., Benson, D.J.: A computational procedure for pre-bending of wind turbine blades. Int. J. Numer. Methods Eng. 89, 323–336 (2012)

    Article  MATH  Google Scholar 

  8. Bazilevs, Y., Hsu, M.-C., Takizawa, K., Tezduyar, T.E.: ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid–structure interaction. Math. Mod. Methods Appl. Sci. 22 (supp02), 1230002 (2012)

    Article  MATH  Google Scholar 

  9. Bazilevs, Y., Hsu, M.-C., Scott, M.A.: Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput. Methods Appl. Mech. Eng. 249–252, 28–41 (2012)

    Article  MathSciNet  Google Scholar 

  10. Bazilevs, Y., Takizawa, K., Tezduyar, T.E.: Computational Fluid–Structure Interaction: Methods and Applications. Wiley, Chichester (2013)

    Book  MATH  Google Scholar 

  11. Bazilevs, Y., Korobenko, A., Deng, X., Yan, J., Kinzel, M., Dabiri, J.O.: FSI modeling of vertical-axis wind turbines. J. Appl. Mech. 81, 081006 (2014)

    Article  Google Scholar 

  12. Bazilevs, Y., Korobenko, A., Yan, J., Pal, A., Gohari, S.M.I., Sarkar, S.: ALE–VMS formulation for stratified turbulent incompressible flows with applications. Math. Models Methods Appl. Sci. 25, 1540011 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Bazilevs, Y., Deng, X., Korobenko, A., Lanza Di Scalea, F., Todd, M.D., Taylor, S.G.: Isogeometric fatigue damage prediction in large-scale composite structures driven by dynamic sensor data. J. Appl. Mech. 82, 091008 (2015)

    Article  Google Scholar 

  14. Bazilevs, Y., Korobenko, A., Deng, X., Yan, J.: Novel structural modeling and mesh moving techniques for advanced FSI simulation of wind turbines. Int. J. Numer. Methods Eng. 102, 766–783 (2015)

    Article  MathSciNet  Google Scholar 

  15. Behr, M., Tezduyar, T.: The shear-slip mesh update method. Comput. Methods Appl. Mech. Eng. 174, 261–274 (1999)

    Article  MATH  Google Scholar 

  16. Behr, M., Tezduyar, T.: Shear-slip mesh update in 3D computation of complex flow problems with rotating mechanical components. Comput. Methods Appl. Mech. Eng. 190, 3189–3200 (2001)

    Article  MATH  Google Scholar 

  17. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis. Toward Integration of CAD and FEA. Wiley, Chichester (2009)

    Book  MATH  Google Scholar 

  18. Hsu, M.-C., Akkerman, I., Bazilevs, Y.: Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment. Wind Energy 17, 461–481 (2014)

    Article  Google Scholar 

  19. Hsu, M.-C., Kamensky, D., Bazilevs, Y., Sacks, M.S., Hughes, T.J.R.: Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Comput. Mech. 54, 1055–1071 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hughes, T.J.R., Liu, W.K., Zimmermann, T.K.: Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 29, 329–349 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Johnson, A.A., Tezduyar, T.E.: Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput. Methods Appl. Mech. Eng. 119, 73–94 (1994)

    Article  MATH  Google Scholar 

  23. Kiendl, J., Bazilevs, Y., Hsu, M.-C., Wüchner, R., Bletzinger, K.-U.: The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput. Methods Appl. Mech. Eng. 199, 2403–2416 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Korobenko, A., Hsu, M.-C., Akkerman, I., Bazilevs, Y.: Aerodynamic simulation of vertical-axis wind turbines. J. Appl. Mech. 81, 021011 (2013)

    Article  Google Scholar 

  25. Korobenko, A., Hsu, M.-C., Akkerman, I., Tippmann, J., Bazilevs, Y.: Structural mechanics modeling and FSI simulation of wind turbines. Math. Mod. Methods Appl. Sci. 23, 249–272 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Piegl, L., Tiller, W.: The NURBS Book (Monographs in Visual Communication), 2nd edn. Springer, New York (1997)

    Book  MATH  Google Scholar 

  27. Raknes, S.B., Deng, X., Bazilevs, Y., Benson, D.J., Mathisen, K.M., Kvamsdal, T.: Isogeometric rotation-free bending-stabilized cables: statics, dynamics, bending strips and coupling with shells. Comput. Methods Appl. Mech. Eng. 263, 127–143 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Stein, K., Tezduyar, T., Benney, R.: Mesh moving techniques for fluid–structure interactions with large displacements. J. Appl. Mech. 70, 58–63 (2003)

    Article  MATH  Google Scholar 

  29. Takizawa, K.: Computational engineering analysis with the new-generation space–time methods. Comput. Mech. 54, 193–211 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Takizawa, K., Henicke, B., Montes, D., Tezduyar, T.E., Hsu, M.-C., Bazilevs, Y.: Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics. Comput. Mech. 48, 647–657 (2011)

    Article  MATH  Google Scholar 

  31. Takizawa, K., Henicke, B., Tezduyar, T.E., Hsu, M.-C., Bazilevs, Y.: Stabilized space–time computation of wind-turbine rotor aerodynamics. Comput. Mech. 48, 333–344 (2011)

    Article  MATH  Google Scholar 

  32. Takizawa, K., Bazilevs, Y., Tezduyar, T.E.: Space–time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling. Arch. Comput. Methods Eng. 19, 171–225 (2012)

    Article  MathSciNet  Google Scholar 

  33. Takizawa, K., Tezduyar, T.E., Boben, J., Kostov, N., Boswell, C., Buscher, A.: Fluid–structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity. Comput. Mech. 52, 1351–1364 (2013)

    Article  MATH  Google Scholar 

  34. Takizawa, K., Bazilevs, Y., Tezduyar, T.E., Hsu, M.-C., Øiseth, O., Mathisen, K.M., Kostov, N., McIntyre, S.: Engineering analysis and design with ALE-VMS and space–time methods. Arch. Comput. Methods Eng. 21, 481–508 (2014)

    Article  MathSciNet  Google Scholar 

  35. Takizawa, K., Tezduyar, T.E., Kostov, N.: Sequentially-coupled space–time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV. Comput. Mech. 54, 213–233 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Takizawa, K., Tezduyar, T.E., McIntyre, S., Kostov, N., Kolesar, R., Habluetzel, C.: Space–time VMS computation of wind-turbine rotor and tower aerodynamics. Comput. Mech. 53, 1–15 (2014)

    Article  MATH  Google Scholar 

  37. Takizawa, K., Bazilevs, Y., Tezduyar, T.E., Long, C.C., Marsden, A.L., Schjodt, K.: ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. Math. Mod. Methods Appl. Sci. 24, 2437–2486 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tezduyar, T.E.: Finite element methods for flow problems with moving boundaries and interfaces. Arch. Comput. Methods Eng. 8, 83–130 (2001)

    Article  MATH  Google Scholar 

  39. Tezduyar, T.E.: Finite elements in fluids: special methods and enhanced solution techniques. Comput. Fluids 36, 207–223 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tezduyar, T.E., Sathe, S.: Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int. J. Numer. Methods Fluids 54, 855–900 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tezduyar, T.E., Behr, M., Mittal, S., Johnson, A.A.: Computation of unsteady incompressible flows with the finite element methods – space–time formulations, iterative strategies and massively parallel implementations. In: New Methods in Transient Analysis, PVP-Vol.246/AMD-Vol. 143, pp. 7–24. ASME, New York (1992)

    Google Scholar 

  42. Tezduyar, T., Aliabadi, S., Behr, M., Johnson, A., Mittal, S.: Parallel finite-element computation of 3D flows. Computer 26 (10), 27–36 (1993)

    Article  MATH  Google Scholar 

  43. Tezduyar, T., Aliabadi, S., Behr, M., Johnson, A., Kalro, V., Litke, M.: Flow simulation and high performance computing. Comput. Mech. 18, 397–412 (1996)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the AFOSR Award FA9550-12-1-0005, the AFOSR Award FA9550-12-1-0046, the NSF Award CBET-1306869, and the NSF CAREER Award 1055091. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Bazilevs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Korobenko, A., Deng, X., Yan, J., Bazilevs, Y. (2016). Recent Advances in Fluid–Structure Interaction Simulations of Wind Turbines. In: Bazilevs, Y., Takizawa, K. (eds) Advances in Computational Fluid-Structure Interaction and Flow Simulation. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-40827-9_38

Download citation

Publish with us

Policies and ethics