Skip to main content

Elasto-Capillarity Simulations Based on the Navier–Stokes–Cahn–Hilliard Equations

  • Chapter
  • First Online:

Abstract

We consider a computational model for complex-fluid–solid interaction (CSFI) based on a diffuse-interface model for the complex fluid and a hyperelastic-material model for the solid. The diffuse-interface complex-fluid model is described by the incompressible Navier–Stokes–Cahn–Hilliard (NSCH) equations with preferential-wetting boundary conditions at the fluid–solid interface. The corresponding fluid traction on the interface includes a capillary-stress contribution, and the dynamic interface condition comprises the traction exerted by the non-uniform fluid–solid surface tension. We present a weak formulation of the aggregated CSFI problem, based on an arbitrary-Lagrangian–Eulerian formulation of the NSCH equations and a proper reformulation of the complex-fluid traction and the fluid–solid surface tension. To validate the presented CSFI model, we present numerical results and conduct a comparison to experimental data for a droplet on a soft substrate.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The admissible solid deformations must in fact satisfy auxiliary conditions at the interface to ensure that the surface-tension contributions are well-defined. Detailed treatment of this aspect is beyond the scope of this work.

References

  1. Abels, H., Garcke, H., Grün, G.: Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Models Methods Appl. Sci. 22, 1150013 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aland, S., Voigt, A.: Benchmark computations of diffuse interface models for two-dimensional bubble dynamics. Int. J. Numer. Meth. Fluids 69, 747–761 (2012)

    Article  MathSciNet  Google Scholar 

  3. Bänsch, E.: Finite element discretization of the Navier–Stokes equations with a free capillary surface. Numer. Math. 88, 203–235 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bazilevs, Y., Takizawa, K., Tezduyar, T.E.: Computational Fluid-Structure Interaction: Methods and Applications. Wiley, Chichester (2013)

    Book  MATH  Google Scholar 

  5. Bueno, J., Bona-Casas, C., Bazilevs, Y., Gomez, H.: Interaction of complex fluids and solids: theory, algorithms and application to phase-change-driven implosion. Comput. Mech. 55, 1105–1118 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Buffa, A., de Falco, C., Sangalli, G.: Isogeometric analysis: stable elements for the 2D Stokes equation. Int. J. Numer. Meth. Fluids 65, 1407–1422 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dziuk, G.: An algorithm for evolutionary surfaces. Numer. Math. 58, 603–611 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Evans, J.A., Hughes, T.J.R.: Isogeometric divergence-conforming B-splines for the steady Navier-Stokes equations. Math. Models Methods Appl. Sci. 23, 1421–1478 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gouin, H.: Interfaces endowed with nonconstant surface energies revisited with the d’Alembert–Lagrange principle. Math. Mech. Complex Syst. 2, 23–43 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guo, Z., Lin, P., Lowengrub, J.S.: A numerical method for the quasi-incompressible Cahn–Hilliard–Navier–Stokes equations for variable density flows with a discrete energy law. J. Comput. Phys. 276, 486–507, 11 (2014)

    Google Scholar 

  11. Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435–479 (1977)

    Article  Google Scholar 

  12. Jacqmin, D.: Calculation of two-phase Navier–Stokes flows using phase-field modeling. J. Comput. Phys. 155, 96–127, 10 (1999)

    Google Scholar 

  13. Jacqmin, D.: Contact-line dynamics of a diffuse fluid interface. J. Fluid Mech. 402, 57–88 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn–Hilliard fluids and topological transitions. Proc. Math. Phys. Eng. Sci. 454, 2617–2654 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Melbø, H., Kvamsdal, T.: Goal oriented error estimators for Stokes equations based on variationally consistent postprocessing. Comput. Methods Appl. Mech. Eng. 192, 613–633 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Py, C., Reverdy, P., Doppler, L., Bico, J., Roman, B., Baroud, C.N.: Capillary origami: spontaneous wrapping of a droplet with an elastic sheet. Phys. Rev. Lett. 98, 156103 (2007)

    Article  MATH  Google Scholar 

  17. Style, R.W., et al.: Patterning droplets with durotaxis. PNAS 110 (31), 12541–12544 (2013)

    Article  Google Scholar 

  18. Style, R.W., Boltyanskiy, R., Che, Y., Wettlaufer, J.S., Wilen, L.A., Dufresne, E.R.: Universal deformation of soft substrates near a contact line and the direct measurement of solid surface stresses. Phys. Rev. Lett. 110, 066103 (2013)

    Article  Google Scholar 

  19. Tezduyar, T.E., Takizawa, K., Moorman, C., Wright, S., Christopher, J.: Space–time finite element computation of complex fluid–structure interactions. Int. J. Numer. Meth. Fluids 64, 1201–1218 (2010)

    Article  MATH  Google Scholar 

  20. van Brummelen, E.H.: Partitioned iterative solution methods for fluid-structure interaction. Int. J. Numer. Meth. Fluids 65, 3–27 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. van Brummelen, E.H., van der Zee, K.G., Garg, V.V., Prudhomme, S.: Flux evaluation in primal and dual boundary-coupled problems. J. Appl. Mech. 79, 010904-8 (2012)

    Article  Google Scholar 

  22. van der Zee, K.G., van Brummelen, E.H., Akkerman, I., de Borst, R.: Goal-oriented error estimation and adaptivity for fluid-structure interaction using exact linearized adjoints. Comput. Methods Appl. Mech. Eng. 200, 2738–2757 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by NanoNextNL, a micro and nanotechnology consortium of the Government of the Netherlands and 130 partners.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. H. van Brummelen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

van Brummelen, E.H., Shokrpour-Roudbari, M., van Zwieten, G.J. (2016). Elasto-Capillarity Simulations Based on the Navier–Stokes–Cahn–Hilliard Equations. In: Bazilevs, Y., Takizawa, K. (eds) Advances in Computational Fluid-Structure Interaction and Flow Simulation. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-40827-9_35

Download citation

Publish with us

Policies and ethics