Skip to main content

A Diffuse Interface Model for Incompressible Two-Phase Flow with Large Density Ratios

  • Chapter
  • First Online:
Advances in Computational Fluid-Structure Interaction and Flow Simulation

Abstract

In this chapter, we explore numerical simulations of incompressible and immiscible two-phase flows. The description of the fluid–fluid interface is introduced via a diffuse interface approach. The two-phase fluid system is represented by a coupled Cahn–Hilliard Navier–Stokes set of equations. We discuss challenges and approaches to solving this coupled set of equations using a stabilized finite element formulation, especially in the case of a large density ratio between the two fluids. Specific features that enabled efficient solution of the equations include: (i) a conservative form of the convective term in the Cahn–Hilliard equation which ensures mass conservation of both fluid components; (ii) a continuous formula to compute the interfacial surface tension which results in lower requirement on the spatial resolution of the interface; and (iii) a four-step fractional scheme to decouple pressure from velocity in the Navier–Stokes equation. These are integrated with standard streamline-upwind Petrov–Galerkin stabilization to avoid spurious oscillations. We perform numerical tests to determine the minimal resolution of spatial discretization. Finally, we illustrate the accuracy of the framework using the analytical results of Prosperetti for a damped oscillating interface between two fluids with a density contrast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    [20] also suggests a degenerate form of M, M = D(1 −ϕ 2), where D is the diffusivity. We obtain identical results for the results presented here, with the constant mobility case converging faster (iterations per time step).

References

  1. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30 (1), 139–165 (1998)

    Article  MathSciNet  Google Scholar 

  2. Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100 (2), 335–354 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Caginalp, G., Chen, X.: Convergence of the phase field model to its sharp interface limits. Eur. J. Appl. Math. 9 (4), 417–445 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. i. interfacial free energy. J. Chem. Phys. 28 (2), 258–267 (1958)

    Google Scholar 

  5. Ceniceros, H.D., Nós, R.L., Roma, A.M.: Three-dimensional, fully adaptive simulations of phase-field fluid models. J. Comput. Phys. 229 (17), 6135–6155 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chang, Y.-C., Hou, T.Y., Merriman, B., Osher, S.: A level set formulation of Eulerian interface capturing methods for incompressible fluid flows. J. Comput. Phys. 124 (2), 449–464 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Choi, H.G., Choi, H., Yoo, J.Y.: A fractional four-step finite element formulation of the unsteady incompressible Navier-Stokes equations using SUPG and linear equal-order element methods. Comput. Methods Appl. Mech. Eng. 143 (3), 333–348 (1997)

    Article  MATH  Google Scholar 

  8. Ding, H., Spelt, P.D.M., Shu, C.: Diffuse interface model for incompressible two-phase flows with large density ratios. J. Comput. Phys. 226 (2), 2078–2095 (2007)

    Article  MATH  Google Scholar 

  9. Dong, S., Shen, J.: A time-stepping scheme involving constant coefficient matrices for phase-field simulations of two-phase incompressible flows with large density ratios. J. Comput. Phys. 231 (17), 5788–5804 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gueyffier, D., Li, J., Nadim, A., Scardovelli, R., Zaleski, S.: Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows. J. Comput. Phys. 152 (2), 423–456 (1999)

    Article  MATH  Google Scholar 

  11. Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49 (3), 435 (1977)

    Article  Google Scholar 

  12. Kim, J.: A continuous surface tension force formulation for diffuse-interface models. J. Comput. Phys. 204 (2), 784–804 (2005)

    Google Scholar 

  13. Li, X., Lowengrub, J., Rätz, A., Voigt, A.: Solving PDEs in complex geometries: a diffuse domain approach. Commun. Math. Sci. 7 (1), 81 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn–Hilliard fluids and topological transitions. Proc. R. Soc. London Ser. A 454 (1978), 2617–2654 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Minjeaud, S.: An unconditionally stable uncoupled scheme for a triphasic Cahn–Hilliard/ Navier–Stokes model. Numer. Methods Partial Differ. Equ., 29 (2), 584–618 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79 (1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. Prosperetti, A.: Motion of two superposed viscous fluids. Phys. Fluids 24 (7), 1217 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  18. Simsek, G., van der Zee, K.G., van Brummelen, E.H.: Stable–time scheme for energy dissipative quasi–incompressible two–phase diffuse–interface flows. In: Book of Abstracts, European Conference on Numerical Mathematics and Advanced Applications p. 159 (2015)

    Google Scholar 

  19. Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S., Jan, Y.-J.: A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169 (2), 708–759 (2001)

    Article  MATH  Google Scholar 

  20. Wodo, O., Ganapathysubramanian, B.: Computationally efficient solution to the Cahn-Hilliard equation: adaptive implicit time schemes, mesh sensitivity analysis and the 3d isoperimetric problem. J. Comput. Phys. 230 (15), 6037–6060 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Xie, Y., Wodo, O., Ganapathysubramanian, B.: A diffuse interface model for incompressible two-phase flows: stabilized FEM, large density ratios, and the 3d patterned substrate wetting problem. Comput. Fluids (submitted) doi:10.1016/j.compfluid.2016.04.011

    Google Scholar 

  22. Yue, P., Feng, J.J.: Can diffuse-interface models quantitatively describe moving contact lines? Eur. Phys. J. E Spec. Top. 197 (1), 37–46 (2011)

    Article  Google Scholar 

  23. Yue, P., Zhou, C., Feng, J.J., Ollivier-Gooch, C.F., Hu, H.H.: Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing. J. Comput. Phys. 219 (1), 47–67 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yue, P., Zhou, C., Feng, J.J.: Sharp-interface limit of the Cahn–Hilliard model for moving contact lines. J. Fluid Mech. 645, 279–294 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhou, C., Yue, P., Feng, J.J., Ollivier-Gooch, C.F., Hu, H.H.: 3d phase-field simulations of interfacial dynamics in Newtonian and viscoelastic fluids. J. Comput. Phys. 229 (2), 498–511 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge partial funding from KAUST CRG, NSF 1236839, and NSF 1149365. Computing support from NSF XSEDE via TG-CTS110007 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baskar Ganapathysubramanian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Xie, Y., Wodo, O., Ganapathysubramanian, B. (2016). A Diffuse Interface Model for Incompressible Two-Phase Flow with Large Density Ratios. In: Bazilevs, Y., Takizawa, K. (eds) Advances in Computational Fluid-Structure Interaction and Flow Simulation. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-40827-9_16

Download citation

Publish with us

Policies and ethics