Advertisement

Microglia Function in the Normal Brain

  • Rommy von BernhardiEmail author
  • Florencia Heredia
  • Nicole Salgado
  • Paola Muñoz
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 949)

Abstract

The activation of microglia has been recognized for over a century by their morphological changes. Long slender microglia acquire a short sturdy ramified shape when activated. During the past 20 years, microglia have been accepted as an essential cellular component for understanding the pathogenic mechanism of many brain diseases, including neurodegenerative diseases. More recently, functional studies and imaging in mouse models indicate that microglia are active in the healthy central nervous system. It has become evident that microglia release several signal molecules that play key roles in the crosstalk among brain cells, i.e., astrocytes and oligodendrocytes with neurons, as well as with regulatory immune cells. Recent studies also reveal the heterogeneous nature of microglia diverse functions depending on development, previous exposure to stimulation events, brain region of residence, or pathological state. Subjects to approach by future research are still the unresolved questions regarding the conditions and mechanisms that render microglia protective, capable of preventing or reducing damage, or deleterious, capable of inducing or facilitating the progression of neuropathological diseases. This novel knowledge will certainly change our view on microglia as therapeutic target, shifting our goal from their general silencing to the generation of treatments able to change their activation pattern.

Keywords

Central nervous system Cytokines Development Glia Neuroinflammation 

Abbreviations

5-HT

Serotonin

β-amyloid

AD

Alzheimer’s disease

ALS

Amyotrophic lateral sclerosis

ATP

Adenosine triphosphate

BDNF

Brain derived neurotrophic factor

CNS

Central nervous system

CNTF

Ciliary neurotrophic factor

DAMPs

Damage- or Danger-associated molecular patterns

EP2

Prostanoid receptor subtype 2

GABA

Gamma aminobutyric acid

GDNF

Glia derived neurotrophic factor

GM-CSF

Granulocyte/macrophage colony stimulating factor

HIV-1

 Human immunodeficiency virus

IFNγ

 Interferon gamma

IGF1

Insulin-like growth factor 1

IL1

Interleukin 1

iNOS

Inducible nitric oxide synthase

InsP3

Inositol trisphosphate

LPS

Lipopolysaccharides

LTP

Long time Potentiation

M-CSF

Macrophage colony-stimulating factor

MHC

Class I molecules of histocompatibility major complex

NGF

Nerve growth factor

NMDA

N-methyl-d-aspartate

NO

Nitric Oxide

NT

Neurotrophin

PAMPs

Pathogen-associated molecular patterns

PGE2

Prostaglandin E2

PRRs

Pattern recognition receptors

RANTES

Regulated on activation, normal T cell expressed and secreted—chemokine CCL5

RNS

Reactive nitrogen species

ROS

Reactive oxygen species

Rs

Receptors

SDF-1α

Stromal cell-derived factor

SIRPα

Signal regulatory protein α

SRs

Scavenger receptors

TGFβ

Transforming growth factor-β

TLRs

Toll-like receptors

TNFα

Tumor necrosis factor α

TSPs

Thrombospondins

Notes

Acknowledgments

This work was supported by grant FONDECYT 1131025 to RvB.

References

  1. Aarum J, Sandberg K, Haeberlein SL, Persson MA (2003) Migration and differentiation of neural precursor cells can be directed by microglia. Proc Natl Acad Sci USA 100(26):15983–15988. doi: 10.1073/pnas.2237050100 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10(12):1538–1543. doi: 10.1038/nn2014 PubMedCrossRefGoogle Scholar
  3. Alarcón R, Fuenzalida C, Santibanez M, von Bernhardi R (2005) Expression of scavenger receptors in glial cells. Comparing the adhesion of astrocytes and microglia from neonatal rats to surface-bound beta-amyloid. J Biol Chem 280(34):30406–30415. doi: 10.1074/jbc.M414686200 Google Scholar
  4. Aravalli RN, Hu S, Lokensgard JR (2007a) Toll-like receptor 2 signaling is a mediator of apoptosis in herpes simplex virus-infected microglia. J Neuroinflammation 4:11. doi: 10.1186/1742-2094-4-11 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Aravalli RN, Hu S, Lokensgard JR (2008) Inhibition of toll-like receptor signaling in primary murine microglia. J Neuroimmu Pharmacol Off J Soc NeuroImmu Pharmacol 3(1):5–11. doi: 10.1007/s11481-007-9097-8 CrossRefGoogle Scholar
  6. Aravalli RN, Peterson PK, Lokensgard JR (2007b) Toll-like receptors in defense and damage of the central nervous system. J Neuroimmu Pharmacol Off J Soc NeuroImmu Pharmacol 2(4):297–312. doi: 10.1007/s11481-007-9071-5 CrossRefGoogle Scholar
  7. Areschoug T, Gordon S (2009) Scavenger receptors: role in innate immunity and microbial pathogenesis. Cell Microbiol 11(8):1160–1169. doi: 10.1111/j.1462-5822.2009.01326.x PubMedCrossRefGoogle Scholar
  8. Avital A, Goshen I, Kamsler A, Segal M, Iverfeldt K, Richter-Levin G, Yirmiya R (2003) Impaired interleukin-1 signaling is associated with deficits in hippocampal memory processes and neural plasticity. Hippocampus 13:826–834Google Scholar
  9. Babcock AA, Wirenfeldt M, Holm T, Nielsen HH, Dissing-Olesen L, Toft-Hansen H, Millward JM, Landmann R, Rivest S, Finsen B, Owens T (2006) Toll-like receptor 2 signaling in response to brain injury: an innate bridge to neuroinflammation. J Neurosci 26(49):12826–12837. doi: 10.1523/JNEUROSCI.4937-05.2006 PubMedCrossRefGoogle Scholar
  10. Barclay AN, Wright GJ, Brooke G, Brown MH (2002) CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol 23(6):285–290PubMedCrossRefGoogle Scholar
  11. Beattie MS, Malenka RC (2002) Control of synaptic strength by glial TNFalpha. Science 295:2282–2285Google Scholar
  12. Ben-Hur T, Ben-Menachem O, Furer V, Einstein O, Mizrachi-Kol R, Grigoriadis N (2003) Effects of proinflammatory cytokines on the growth, fate, and motility of multipotential neural precursor cells. Mol Cell Neurosci 24:623–631  Google Scholar
  13. Beurel E, Michalek SM, Jope RS (2010) Innate and adaptive immune responses regulated by glycogen synthase kinase-3 (GSK3). Trends Immunol 31(1):24–31. doi: 10.1016/j.it.2009.09.007 PubMedCrossRefGoogle Scholar
  14. Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, De Clercq E, Vescovi A, Bagetta G, Kollias G, Meldolesi J, Volterra A (2001) CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 4(7):702–710. doi: 10.1038/89490 PubMedCrossRefGoogle Scholar
  15. Bianchi ME (2007) DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 81(1):1–5. doi: 10.1189/jlb.0306164 PubMedCrossRefGoogle Scholar
  16. Biber K, Neumann H, Inoue K, Boddeke HW (2007) Neuronal ‘On’ and ‘Off’ signals control microglia. Trends Neurosci 30(11):596–602. doi: 10.1016/j.tins.2007.08.007 PubMedCrossRefGoogle Scholar
  17. Biber K, Vinet J, Boddeke HW (2008) Neuron-microglia signaling: chemokines as versatile messengers. J Neuroimmunol 198(1–2):69–74. doi: 10.1016/j.jneuroim.2008.04.012 PubMedCrossRefGoogle Scholar
  18. Block ML, Hong JS (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76(2):77–98. doi: 10.1016/j.pneurobio.2005.06.004 PubMedCrossRefGoogle Scholar
  19. Block ML, Li G, Qin L , Wu X, Pei Z, Wang T et al (2006) Potent regulation of microglia-derived oxidative stress and dopaminergic neuron survival: substance P vs. dynorphin. FASEB J 20:251–258  Google Scholar
  20. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8(1):57–69. doi: 10.1038/nrn2038 PubMedCrossRefGoogle Scholar
  21. Boucsein C, Zacharias R, Farber K, Pavlovic S, Hanisch UK, Kettenmann H (2003) Purinergic receptors on microglial cells: functional expression in acute brain slices and modulation of microglial activation in vitro. Eur J Neurosci 17(11):2267–2276PubMedCrossRefGoogle Scholar
  22. Brooke G, Holbrook JD, Brown MH, Barclay AN (2004) Human lymphocytes interact directly with CD47 through a novel member of the signal regulatory protein (SIRP) family. J Immunol 173(4):2562–2570PubMedCrossRefGoogle Scholar
  23. Butovsky O, Ziv Y, Schwartz A, Landa G, Talpalar AE, Pluchino S, Martino G, Schwartz M (2006) Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol Cell Neurosci 31(1):149–160. doi: 10.1016/j.mcn.2005.10.006 PubMedCrossRefGoogle Scholar
  24. Carbonell WS, Murase S, Horwitz AF, Mandell JW (2005) Migration of perilesional microglia after focal brain injury and modulation by CC chemokine receptor 5: an in situ time-lapse confocal imaging study. J Neurosci 25(30):7040–7047. doi: 10.1523/JNEUROSCI.5171-04.2005 PubMedCrossRefGoogle Scholar
  25. Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, Huang D, Kidd G, Dombrowski S, Dutta R, Lee JC, Cook DN, Jung S, Lira SA, Littman DR, Ransohoff RM (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9(7):917–924. doi: 10.1038/nn1715 PubMedCrossRefGoogle Scholar
  26. Carpentier PA, Duncan DS, Miller SD (2008) Glial toll-like receptor signaling in central nervous system infection and autoimmunity. Brain Behav Immun 22(2):140–147. doi: 10.1016/j.bbi.2007.08.011 PubMedCrossRefGoogle Scholar
  27. Casano AM, Peri F (2015) Microglia: multitasking specialists of the brain. Dev Cell 32(4):469–477. doi: 10.1016/j.devcel.2015.01.018 PubMedCrossRefGoogle Scholar
  28. Caso JR, Pradillo JM, Hurtado O, Lorenzo P, Moro MA, Lizasoain I (2007) Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation 115(12):1599–1608. doi: 10.1161/CIRCULATIONAHA.106.603431 PubMedCrossRefGoogle Scholar
  29. Cepko CL, Austin CP, Yang X, Alexiades M, Ezzeddine D (1996) Cell fate determination in the vertebrate retina. Proc Natl Acad Sci USA 93:589–595Google Scholar
  30. Chakrabarty P, Jansen-West K, Beccard A, Ceballos-Diaz C, Levites Y, Verbeeck C (2010) Massive gliosis induced by interleukin-6 suppresses Abeta deposition in vivo: evidence against inflammation as a driving forcé for amyloid deposition. FASEB J 24:548–559Google Scholar
  31. Chamak B, Dobbertin A, Mallat M (1995) Immunohistochemical detection of thrombospondin in microglia in the developing rat brain. Neuroscience 69:177–187Google Scholar
  32. Chang YP, Fang KM, Lee TI, Tzeng SF (2006) Regulation of microglial activities by glial cell line derived neurotrophic factor. J Cell Biochem 97(3):501–511. doi: 10.1002/jcb.20646 PubMedCrossRefGoogle Scholar
  33. Chen Z, Trapp BD (2015) Microglia and neuroprotection. J Neurochem. doi: 10.1111/jnc.13062 Google Scholar
  34. Cherry JD, Olschowka JA, O’Banion MK (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation 11:98. doi: 10.1186/1742-2094-11-98 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Christopherson KS, Ullian EM, Stokes CC, Mullowney CE, Hell JW, Agah A, Lawler J, Mosher DF, Bornstein P, Barres BA (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120(3):421–433. doi: 10.1016/j.cell.2004.12.020 PubMedCrossRefGoogle Scholar
  36. Colton C, Wilcock DM (2010) Assessing activation states in microglia. CNS Neurol Disord: Drug Targets 9(2):174–191CrossRefGoogle Scholar
  37. Colton CA (2009) Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmu Pharmacol Off J Soc NeuroImmun Pharmacol 4(4):399–418. doi: 10.1007/s11481-009-9164-4 CrossRefGoogle Scholar
  38. Conde JR, Streit WJ (2006) Microglia in the aging brain. J Neuropathol Exp Neurol 65(3):199–203. doi: 10.1097/01.jnen.0000202887.22082.63 PubMedCrossRefGoogle Scholar
  39. Cornejo F, von Bernhardi R (2013) Role of scavenger receptors in glia-mediated neuroinflammatory response associated with Alzheimer’s disease. Mediat Inflamm 2013:895651. doi: 10.1155/2013/895651 CrossRefGoogle Scholar
  40. Corriveau RA, Huh GS, Shatz CJ (1998) Regulation of class I MHC gene expression in the developing and mature CNS by neural activity. Neuron 21:505–520Google Scholar
  41. Cullheim S, Thams S (2007) The microglial networks of the brain and their role in neuronal network plasticity after lesion. Brain Res Rev 55(1):89–96. doi: 10.1016/j.brainresrev.2007.03.012 PubMedCrossRefGoogle Scholar
  42. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758. doi: 10.1038/nn1472 PubMedCrossRefGoogle Scholar
  43. Davoust N, Vuaillat C, Androdias G, Nataf S (2008) From bone marrow to microglia: barriers and avenues. Trends Immunol 29(5):227–234. doi: 10.1016/j.it.2008.01.010 PubMedCrossRefGoogle Scholar
  44. Di Filippo M, Chiasserini D, Tozzi A, Picconi B, Calabresi P (2010) Mitochondria and the link between neuroinflammation and neurodegeneration. J Alzheimers Dis 20(Suppl 2):S369–S379. doi: 10.3233/JAD-2010-100543 PubMedGoogle Scholar
  45. Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O (2003) Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci USA 100(23):13632–13637. doi: 10.1073/pnas.2234031100 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Ekdahl CT, Kokaia Z, Lindvall O (2009) Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 158(3):1021–1029. doi: 10.1016/j.neuroscience.2008.06.052 PubMedCrossRefGoogle Scholar
  47. Elkabes S, DiCicco-Bloom EM, Black IB (1996) Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J Neurosci 16(8):2508–2521PubMedGoogle Scholar
  48. Fang KM, Yang CS, Sun SH, Tzeng SF (2009) Microglial phagocytosis attenuated by short-term exposure to exogenous ATP through P2X receptor action. J Neurochem 111(5):1225–1237. doi: 10.1111/j.1471-4159.2009.06409.x PubMedCrossRefGoogle Scholar
  49. Fassbender K, Walter S, Kuhl S, Landmann R, Ishii K, Bertsch T, Stalder AK, Muehlhauser F, Liu Y, Ulmer AJ, Rivest S, Lentschat A, Gulbins E, Jucker M, Staufenbiel M, Brechtel K, Walter J, Multhaup G, Penke B, Adachi Y, Hartmann T, Beyreuther K (2004) The LPS receptor (CD14) links innate immunity with Alzheimer’s disease. FASEB J 18(1):203–205. doi: 10.1096/fj.03-0364fje PubMedGoogle Scholar
  50. Fenn AM, Hall JC, Gensel JC, Popovich PG, Godbout JP (2014) IL-4 signaling drives a unique arginase+/IL-1beta+microglia phenotype and recruits macrophages to the inflammatory CNS: consequences of age-related deficits in IL-4Ralpha after traumatic spinal cord injury. J Neurosci 34(26):8904–8917. doi: 10.1523/JNEUROSCI.1146-14.2014 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Ferrini F, De Koninck Y (2013) Microglia control neuronal network excitability via BDNF signalling. Neural Plast 2013:429815. doi: 10.1155/2013/429815 PubMedPubMedCentralGoogle Scholar
  52. Flores B, von Bernhardi R (2012) Transforming growth factor beta1 modulates amyloid beta-induced glial activation through the Smad3-dependent induction of MAPK phosphatase-1. J Alzheimer Dis 32(2):417–429. doi: 10.3233/JAD-2012-120721 Y05258137G173L5 V[pii]Google Scholar
  53. Frade JM, Barde YA (1998) Microglia-derived nerve growth factor causes cell death in the developing retina. Neuron 20(1):35–41PubMedCrossRefGoogle Scholar
  54. Gamo K, Kiryu-Seo S, Konishi H, Aoki S, Matsushima K, Wada K, Kiyama H (2008) G-protein-coupled receptor screen reveals a role for chemokine receptor CCR5 in suppressing microglial neurotoxicity. J Neurosci 28(46):11980–11988. doi: 10.1523/JNEUROSCI.2920-08.2008 PubMedCrossRefGoogle Scholar
  55. Gavilan MP, Revilla E, Pintado C, Castano A, Vizuete ML, Moreno-Gonzalez I, Baglietto-Vargas D, Sanchez-Varo R, Vitorica J, Gutierrez A, Ruano D (2007) Molecular and cellular characterization of the age-related neuroinflammatory processes occurring in normal rat hippocampus: potential relation with the loss of somatostatin GABAergic neurons. J Neurochem 103(3):984–996. doi: 10.1111/j.1471-4159.2007.04787.x PubMedCrossRefGoogle Scholar
  56. Gebicke-Haerter PJ, Spleiss O, Ren LQ, Li H, Dichmann S, Norgauer J, Boddeke HW (2001) Microglial chemokines and chemokine receptors. Prog Brain Res 132:525–532. doi: 10.1016/S0079-6123(01)32100-3 PubMedCrossRefGoogle Scholar
  57. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330(6005):841–845. doi: 10.1126/science.1194637 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Giulian D, Young DG, Woodward J, Brown DC, Lachman LB (1988) Interleukin-1 is an astroglial growth factor in the developing brain. J Neurosci 8(2):709–714PubMedGoogle Scholar
  59. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(6):918–934. doi: 10.1016/j.cell.2010.02.016 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Glezer I, Simard AR, Rivest S (2007) Neuroprotective role of the innate immune system by microglia. Neuroscience 147(4):867–883. doi: 10.1016/j.neuroscience.2007.02.055 PubMedCrossRefGoogle Scholar
  61. Goddard CA, Butts DA, Shatz CJ (2007) Regulation of CNS synapses by neuronal MHC class I. Proc Natl Acad Sci USA 104:6828–6833Google Scholar
  62. Godoy B, Murgas P, Tichauer J, Von Bernhardi R (2012) Scavenger receptor class A ligands induce secretion of IL1beta and exert a modulatory effect on the inflammatory activation of astrocytes in culture. J Neuroimmunol 251(1–2):6–13. doi: 10.1016/j.jneuroim.2012.06.004 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Goshen I, Kreisel T, Ounallah-Saad H, Renbaum P, Zalzstein Y, Ben-Hur T, Levy-Lahad E, Yirmiya R (2007) A dual role for interleukin-1 in hippocampal dependent memory processes. Psychoneuroendocrinology 32:1106–1115Google Scholar
  64. Graeber MB, Streit WJ (2010) Microglia: biology and pathology. Acta Neuropathol 119(1):89–105. doi: 10.1007/s00401-009-0622-0 PubMedCrossRefGoogle Scholar
  65. Hanisch UK, Johnson TV, Kipnis J (2008) Toll-like receptors: roles in neuroprotection? Trends Neurosci 31(4):176–182. doi: 10.1016/j.tins.2008.01.005 PubMedCrossRefGoogle Scholar
  66. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394. doi: 10.1038/nn1997 PubMedCrossRefGoogle Scholar
  67. Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D (2006) The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9(12):1512–1519. doi: 10.1038/nn1805 PubMedCrossRefGoogle Scholar
  68. Hellwig S, Heinrich A, Biber K (2013) The brain’s best friend: microglial neurotoxicity revisited. Front Cell Neurosci 7:71. doi: 10.3389/fncel.2013.00071 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Heneka MT, Golenbock DT, Latz E (2015) Innate immunity in Alzheimer’s disease. Nat Immunol 16(3):229–236. doi: 10.1038/ni.3102 PubMedCrossRefGoogle Scholar
  70. Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. Nat Rev 14(7):463–477. doi: 10.1038/nri3705 Google Scholar
  71. Herrera-Molina R, Flores B, Orellana JA, von Bernhardi R (2012) Modulation of interferon-gamma-induced glial cell activation by transforming growth factor beta1: a role for STAT1 and MAPK pathways. J Neurochem 123(1):113–123. doi: 10.1111/j.1471-4159.2012.07887.x PubMedPubMedCentralCrossRefGoogle Scholar
  72. Herrera-Molina R, von Bernhardi R (2005) Transforming growth factor-beta 1 produced by hippocampal cells modulates microglial reactivity in culture. Neurobiol Dis 19(1–2):229–236. doi: 10.1016/j.nbd.2005.01.003 PubMedCrossRefGoogle Scholar
  73. Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R, Zurawski SM, Blom B, Homola ME, Streit WJ, Brown MH, Barclay AN, Sedgwick JD (2000) Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290(5497):1768–1771PubMedCrossRefGoogle Scholar
  74. Hu X, Leak RK, Shi Y, Suenaga J, Gao Y, Zheng P, Chen J (2015) Microglial and macrophage polarization-new prospects for brain repair. Nat Rev Neurol 11(1):56–64. doi: 10.1038/nrneurol.2014.207 PubMedCrossRefGoogle Scholar
  75. Huh GS, Boulanger  LM, Du H, Riquelme PA, Brotz TM, Shatz CJ (2000) Functional requirement for class I MHC in CNS development and plasticity. Science 290:2155–2159Google Scholar
  76. Ifuku M, Farber K, Okuno Y, Yamakawa Y, Miyamoto T, Nolte C, Merrino VF, Kita S, Iwamoto T, Komuro I, Wang B, Cheung G, Ishikawa E, Ooboshi H, Bader M, Wada K, Kettenmann H, Noda M (2007) Bradykinin-induced microglial migration mediated by B1-bradykinin receptors depends on Ca2+ influx via reverse-mode activity of the Na+/Ca2+ exchanger. J Neurosci 27(48):13065–13073. doi: 10.1523/JNEUROSCI.3467-07.2007 PubMedCrossRefGoogle Scholar
  77. Inoue K, Koizumi S, Kataoka A, Tozaki-Saitoh H, Tsuda M (2009) P2Y(6)-evoked microglial phagocytosis. Int Rev Neurobiol 85:159–163. doi: 10.1016/S0074-7742(09)85012-5 PubMedCrossRefGoogle Scholar
  78. Kempermann G (2002) Regulation of adult hippocampal neurogenesis—implications for novel theories of major depression. Bipolar Disord 4(1):17–33PubMedCrossRefGoogle Scholar
  79. Kempermann G, Kronenberg G (2003) Depressed new neurons–adult hippocampal neurogenesis and a cellular plasticity hypothesis of major depression. Biol Psychiatry 54(5):499–503PubMedCrossRefGoogle Scholar
  80. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91(2):461–553. doi: 10.1152/physrev.00011.2010 PubMedCrossRefGoogle Scholar
  81. Kielian T, Esen N, Bearden ED (2005) Toll-like receptor 2 (TLR2) is pivotal for recognition of S. aureus peptidoglycan but not intact bacteria by microglia. Glia 49(4):567–576. doi: 10.1002/glia.20144 Google Scholar
  82. Kierdorf K, Katzmarski N, Haas CA, Prinz M (2013) Bone marrow cell recruitment to the brain in the absence of irradiation or parabiosis bias. PLoS One 8(3):e58544. doi: 10.1371/journal.pone.0058544 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Kierdorf K, Prinz M (2013) Factors regulating microglia activation. Front Cell Neurosci 7:44. doi: 10.3389/fncel.2013.00044 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Kim SU, de Vellis J (2005) Microglia in health and disease. J Neurosci Res 81(3):302–313PubMedCrossRefGoogle Scholar
  85. Kirischuk S, Moller T, Voitenko N, Kettenmann H, Verkhratsky A (1995) ATP-induced cytoplasmic calcium mobilization in Bergmann glial cells. J Neurosci 15:7861–7871Google Scholar
  86. Koenigsknecht J, Landreth G (2004) Microglial phagocytosis of fibrillar beta-amyloid through a beta1 integrin-dependent mechanism. J Neurosci 24(44):9838–9846. doi: 10.1523/JNEUROSCI.2557-04.2004 PubMedCrossRefGoogle Scholar
  87. Kohman RA, Bhattacharya TK, Kilby C, Bucko P, Rhodes JS (2013) Effects of minocycline on spatial learning, hippocampal neurogenesis and microglia in aged and adult mice. Behav Brain Res 242:17–24. doi: 10.1016/j.bbr.2012.12.032 PubMedCrossRefGoogle Scholar
  88. Koizumi S, Shigemoto-Mogami Y, Nasu-Tada K, Shinozaki Y, Ohsawa K, Tsuda M, Joshi BV, Jacobson KA, Kohsaka S, Inoue K (2007) UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature 446(7139):1091–1095. doi: 10.1038/nature05704 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Konat GW, Kielian T, Marriott I (2006) The role of Toll-like receptors in CNS response to microbial challenge. J Neurochem 99(1):1–12. doi: 10.1111/j.1471-4159.2006.04076.x PubMedPubMedCentralCrossRefGoogle Scholar
  90. Kono H, Rock KL (2008) How dying cells alert the immune system to danger. Nat Rev 8(4):279–289. doi: 10.1038/nri2215 CrossRefGoogle Scholar
  91. Koo JW, Duman RS (2008) IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc Natl Acad Sci USA 105:751–756Google Scholar
  92. Kremlev SG, Roberts RL, Palmer C (2004) Differential expression of chemokines and chemokine receptors during microglial activation and inhibition. J Neuroimmunol 149(1–2):1–9. doi: 10.1016/j.jneuroim.2003.11.012 PubMedCrossRefGoogle Scholar
  93. Labrousse VF, Costes L, Aubert A, Darnaudery M, Ferreira G, Amedee T, Laye S (2009) Impaired interleukin-1beta and c-Fos expression in the hippocampus is associated with a spatial memory deficit in P2X(7) receptor-deficient mice. PLoS One 4:e6006Google Scholar
  94. Lalo U, Pankratov Y, Wichert SP, Rossner MJ, North RA, Kirchhoff F, Verkhratsky A (2008) P2X1 and P2X5 subunits form the functional P2X receptor in mouse cortical astrocytes. J Neurosci 28:5473–5480Google Scholar
  95. Landreth GE, Reed-Geaghan EG (2009) Toll-like receptors in Alzheimer’s disease. Curr Top Microbiol Immunol 336:137–153. doi: 10.1007/978-3-642-00549-7_8 PubMedPubMedCentralGoogle Scholar
  96. Lee TI, Yang CS, Fang KM, Tzeng SF (2009) Role of ciliary neurotrophic factor in microglial phagocytosis. Neurochem Res 34(1):109–117. doi: 10.1007/s11064-008-9682-0 PubMedCrossRefGoogle Scholar
  97. Lehnardt S, Lachance C, Patrizi S, Lefebvre S, Follett PL, Jensen FE, Rosenberg PA, Volpe JJ, Vartanian T (2002) The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS. J Neurosci 22(7):2478–2486. doi:20026268
  98. Lehnardt S, Schott E, Trimbuch T, Laubisch D, Krueger C, Wulczyn G, Nitsch R, Weber JR (2008) A vicious cycle involving release of heat shock protein 60 from injured cells and activation of toll-like receptor 4 mediates neurodegeneration in the CNS. J Neurosci 28(10):2320–2331. doi: 10.1523/JNEUROSCI.4760-07.2008 PubMedCrossRefGoogle Scholar
  99. Lehnardt S, Wennekamp J, Freyer D, Liedtke C, Krueger C, Nitsch R, Bechmann I, Weber JR, Henneke P (2007) TLR2 and caspase-8 are essential for group B Streptococcus-induced apoptosis in microglia. J Immunol 179(9):6134–6143PubMedCrossRefGoogle Scholar
  100. Letiembre M, Liu Y, Walter S, Hao W, Pfander T, Wrede A, Schulz-Schaeffer W, Fassbender K (2009) Screening of innate immune receptors in neurodegenerative diseases: a similar pattern. Neurobiol Aging 30(5):759–768. doi: 10.1016/j.neurobiolaging.2007.08.018 PubMedCrossRefGoogle Scholar
  101. Li Y, Du XF, Liu CS, Wen ZL, Du JL (2012) Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Dev Cell 23(6):1189–1202. doi: 10.1016/j.devcel.2012.10.027 PubMedCrossRefGoogle Scholar
  102. Liang X, Wang Q, Hand T, Wu L, Breyer RM, Montine TJ, Andreasson K (2005) Deletion of the prostaglandin E2 EP2 receptor reduces oxidative damage and amyloid burden in a model of Alzheimer’s disease. J Neurosci 25(44):10180–10187. doi: 10.1523/JNEUROSCI.3591-05.2005 PubMedCrossRefGoogle Scholar
  103. Liang KJ, Lee JE, Wang YD, Ma W, Fontainhas AM, Fariss RN, Wong WT (2009) Regulation of dynamic behavior of retinal microglia by CX3CR1 signaling. Investig Ophthalmol Vis Sci 50:4444–4451Google Scholar
  104. Lim SH, Park E, You B, Jung Y, Park AR, Park SG, Lee JR (2013) Neuronal synapse formation induced by microglia and interleukin 10. PLoS One 8:e81218 astrocytes. J Neurosci 28:5473–5480Google Scholar
  105. Linda H, Shupliakov O, Ornung G, Ottersen OP, Storm-Mathisen J, Risling M, Cullheim S (2000) Ultrastructural evidence for a preferential elimination of glutamate-immunoreactive synaptic terminals from spinal motoneurons after intramedullary axotomy. J Comp Neurol 425(1):10–23PubMedCrossRefGoogle Scholar
  106. Liu Y, Walter S, Stagi M, Cherny D, Letiembre M, Schulz-Schaeffer W, Heine H, Penke B, Neumann H, Fassbender K (2005) LPS receptor (CD14): a receptor for phagocytosis of Alzheimer’s amyloid peptide. Brain 128(Pt 8):1778–1789. doi: 10.1093/brain/awh531 PubMedCrossRefGoogle Scholar
  107. Loscher CE, Mills KH, Lynch MA (2003) Interleukin-1 receptor antagonist exerts agonist activity in the hippocampus independent of the interleukin-1 type I receptor. J Neuroimmunol 137:117–124Google Scholar
  108. Lotz M, Ebert S, Esselmann H, Iliev AI, Prinz M, Wiazewicz N, Wiltfang J, Gerber J, Nau R (2005) Amyloid beta peptide 1-40 enhances the action of Toll-like receptor-2 and -4 agonists but antagonizes Toll-like receptor-9-induced inflammation in primary mouse microglial cell cultures. J Neurochem 94(2):289–298. doi: 10.1111/j.1471-4159.2005.03188.x PubMedCrossRefGoogle Scholar
  109. Lu C, Hua F, Liu L, Ha T, Kalbfleisch J, Schweitzer J, Kelley J, Kao R, Williams D, Li C (2010) Scavenger receptor class-A has a central role in cerebral ischemia-reperfusion injury. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 30(12):1972–1981. doi: 10.1038/jcbfm.2010.59 CrossRefGoogle Scholar
  110. Lynch MA (2009) The multifaceted profile of activated microglia. Mol Neurobiol 40(2):139–156. doi: 10.1007/s12035-009-8077-9 PubMedCrossRefGoogle Scholar
  111. Marin-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N, Mallat M (2004) Microglia promote the death of developing Purkinje cells. Neuron 41(4):535–547PubMedCrossRefGoogle Scholar
  112. Matozaki T, Murata Y, Okazawa H, Ohnishi H (2009) Functions and molecular mechanisms of the CD47-SIRPalpha signalling pathway. Trends Cell Biol 19(2):72–80. doi: 10.1016/j.tcb.2008.12.001 PubMedCrossRefGoogle Scholar
  113. Matzinger P (2007) Friendly and dangerous signals: is the tissue in control? Nat Immunol 8(1):11–13. doi: 10.1038/ni0107-11 PubMedCrossRefGoogle Scholar
  114. McKimmie CS, Fazakerley JK (2005) In response to pathogens, glial cells dynamically and differentially regulate Toll-like receptor gene expression. J Neuroimmunol 169(1–2):116–125. doi: 10.1016/j.jneuroim.2005.08.006 PubMedCrossRefGoogle Scholar
  115. McPherson CA, Kraft AD, Harry GJ (2011) Injury-induced neurogenesis: consideration of resident microglia as supportive of neural progenitor cells. Neurotox Res 19(2):341–352. doi: 10.1007/s12640-010-9199-6 PubMedCrossRefGoogle Scholar
  116. Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M, Heikenwalder M, Bruck W, Priller J, Prinz M (2007) Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 10(12):1544–1553. doi: 10.1038/nn2015 PubMedCrossRefGoogle Scholar
  117. Mitrasinovic OM, Murphy GM Jr (2002) Accelerated phagocytosis of amyloid-B by mouse and human microglia overexpressing the macrophage colony-stimulating factor receptor. J Biol Chem 277:29889–29896Google Scholar
  118. Mitrasinovic OM, Murphy GM Jr (2003) Microglial overexpression of the M-CSF receptor augments phagocytosis of opsonized Abeta. Neurobiol Aging 24(6):807–815PubMedCrossRefGoogle Scholar
  119. Moller JC, Klein MA, Haas S, Jones LL, Kreutzberg GW, Raivich G (1996) Regulation of thrombospondin in the regenerating mouse facial motor nucleus. Glia 17(2):121–132. doi: 10.1002/(SICI)1098-1136(199606)17:2<121:AID-GLIA4>3.0.CO;2-5 PubMedCrossRefGoogle Scholar
  120. Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302(5651):1760–1765. doi: 10.1126/science.1088417 PubMedCrossRefGoogle Scholar
  121. Morgan SC, Taylor DL, Pocock JM (2004) Microglia release activators of neuronal proliferation mediated by activation of mitogen-activated protein kinase, phosphatidylinositol-3-kinase/Akt and delta-Notch signalling cascades. J Neurochem 90(1):89–101. doi: 10.1111/j.1471-4159.2004.02461.x PubMedCrossRefGoogle Scholar
  122. Mount MP, Lira A, Grimes D, Smith PD, Faucher S, Slack R, et al (2007) Involvement of interferon-gamma in microglial-mediated loss of dopaminergic neurons. J Neurosci 27:3328–3337Google Scholar
  123. Murgas P, Cornejo FA, Merino G, von Bernhardi R (2014) SR-A regulates the inflammatory activation of astrocytes. Neurotox Res 25(1):68–80. doi: 10.1007/s12640-013-9432-1 PubMedCrossRefGoogle Scholar
  124. Murgas P, Godoy B, von Bernhardi R (2012) Abeta potentiates inflammatory activation of glial cells induced by scavenger receptor ligands and inflammatory mediators in culture. Neurotox Res 22(1):69–78. doi: 10.1007/s12640-011-9306-3 PubMedCrossRefGoogle Scholar
  125. Nakajima Y, Tohyama T, Kurihara S, Kohsaka S (2005) Axotomy-dependent urokinase induction in the rat facial nucleus: possible stimulation of microglia by neurons. Neurochem Int 46:107–116Google Scholar
  126. Nakajima K, Tohyama Y, Maeda S, Kohsaka S, Kurihara T (2007) Neuronal regulation by which microglia enhance the production of neurotrophic factors for GABAergic, catecholaminergic, and cholinergic neurons. Neurochem Int 50:807–820Google Scholar
  127. Nakanishi M, Niidome T, Matsuda S, Akaike A, Kihara T, Sugimoto H (2007) Microglia-derived interleukin-6 and leukaemia inhibitory factor promote astrocytic differentiation of neural stem/progenitor cells. Eur J Neurosci 25(3):649–658. doi: 10.1111/j.1460-9568.2007.05309.x PubMedCrossRefGoogle Scholar
  128. Napoli I, Neumann H (2009) Microglial clearance function in health and disease. Neuroscience 158(3):1030–1038. doi: 10.1016/j.neuroscience.2008.06.046 PubMedCrossRefGoogle Scholar
  129. Nau R, Bruck W (2002) Neuronal injury in bacterial meningitis: mechanisms and implications for therapy. Trends Neurosci 25(1):38–45PubMedCrossRefGoogle Scholar
  130. Neumann H, Kotter MR, Franklin RJ (2009) Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 132(Pt 2):288–295. doi: 10.1093/brain/awn109 PubMedGoogle Scholar
  131. Nguyen MD, D’Aigle T, Gowing G, Julien JP, Rivest S (2004) Exacerbation of motor neuron disease by chronic stimulation of innate immunity in a mouse model of amyotrophic lateral sclerosis. J Neurosci 24(6):1340–1349. doi: 10.1523/JNEUROSCI.4786-03.2004 PubMedCrossRefGoogle Scholar
  132. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318. doi: 10.1126/science.1110647 PubMedCrossRefGoogle Scholar
  133. Ock J, Jeong J, Choi WS, Lee WH, Kim SH, Kim IK, Suk K (2007) Regulation of Toll-like receptor 4 expression and its signaling by hypoxia in cultured microglia. J Neurosci Res 85(9):1989–1995. doi: 10.1002/jnr.21322 PubMedCrossRefGoogle Scholar
  134. Okun E, Griffioen KJ, Lathia JD, Tang SC, Mattson MP, Arumugam TV (2009) Toll-like receptors in neurodegeneration. Brain Res Rev 59(2):278–292. doi: 10.1016/j.brainresrev.2008.09.001 PubMedCrossRefGoogle Scholar
  135. Oliveira AL, Thams S, Lidman O, Piehl F, Hökfelt T, Kärre K, Lindå H, Cullheim S (2004) A role for MHC class I molecules in synaptic plasticity and regeneration of neurons after axotomy. Proc Natl Acad Sci USA 101(51):17843–17848Google Scholar
  136. Olson JK, Miller SD (2004) Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol 173:3916–3924Google Scholar
  137. Orellana JA, Montero TD, von Bernhardi R (2013) Astrocytes inhibit nitric oxide-dependent Ca(2+) dynamics in activated microglia: involvement of ATP released via pannexin 1 channels. Glia 61(12):2023–2037. doi: 10.1002/glia.22573 PubMedCrossRefGoogle Scholar
  138. Ozeki Y, Tsutsui H, Kawada N, Suzuki H, Kataoka M, Kodama T, Yano I, Kaneda K, Kobayashi K (2006) Macrophage scavenger receptor down-regulates mycobacterial cord factor-induced proinflammatory cytokine production by alveolar and hepatic macrophages. Microb Pathog 40(4):171–176. doi: 10.1016/j.micpath.2005.12.006 PubMedCrossRefGoogle Scholar
  139. Padovan E, Landmann RM, De Libero G (2007) How pattern recognition receptor triggering influences T cell responses: a new look into the system. Trends Immunol 28(7):308–314. doi: 10.1016/j.it.2007.05.002 PubMedCrossRefGoogle Scholar
  140. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M, Ferreira TA, Guiducci E, Dumas L, Ragozzino D, Gross CT (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333(6048):1456–1458. doi: 10.1126/science.1202529 PubMedCrossRefGoogle Scholar
  141. Paolicelli RC, Gross CT (2011) Microglia in development: linking brain wiring to brain environment. Neuron Glia Biol 7(1):77–83. doi: 10.1017/S1740925X12000105 PubMedCrossRefGoogle Scholar
  142. Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR 3rd, Lafaille JJ, Hempstead BL, Littman DR, Gan WB (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155(7):1596–1609. doi: 10.1016/j.cell.2013.11.030 PubMedPubMedCentralCrossRefGoogle Scholar
  143. Perry VH, Cunningham C, Holmes C (2007) Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev 7(2):161–167. doi: 10.1038/nri2015 nri2015[pii]Google Scholar
  144. Perry VH, Holmes C (2014) Microglial priming in neurodegenerative disease. Nature reviews Neurology 10(4):217–224. doi: 10.1038/nrneurol.2014.38 PubMedCrossRefGoogle Scholar
  145. Pocock JM, Kettenmann H (2007) Neurotransmitter receptors on microglia. Trends Neurosci 30(10):527–535. doi: 10.1016/j.tins.2007.07.007 PubMedCrossRefGoogle Scholar
  146. Prinz M, Priller J (2010) Tickets to the brain: role of CCR2 and CX3CR1 in myeloid cell entry in the CNS. J Neuroimmunol 224(1–2):80–84. doi: 10.1016/j.jneuroim.2010.05.015 PubMedCrossRefGoogle Scholar
  147. Prinz M, Priller J (2014) Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 15(5):300–312. doi: 10.1038/nrn3722 PubMedCrossRefGoogle Scholar
  148. Ramírez G, Rey S, von Bernhardi R (2008) Proinflammatory stimuli are needed for induction of microglial cell-mediated AbetaPP_{244-C} and Abeta-neurotoxicity in hippocampal cultures. J Alzheimer Dis 15(1):45–59Google Scholar
  149. Ramirez G, Toro R, Dobeli H, von Bernhardi R (2005) Protection of rat primary hippocampal cultures from A beta cytotoxicity by pro-inflammatory molecules is mediated by astrocytes. Neurobiol Dis 19(1–2):243–254. doi: 10.1016/j.nbd.2005.01.007 PubMedCrossRefGoogle Scholar
  150. Rappert A, Bechmann I, Pivneva T, Mahlo J, Biber K, Nolte C, Kovac AD, Gerard C, Boddeke HW, Nitsch R, Kettenmann H (2004) CXCR3-dependent microglial recruitment is essential for dendrite loss after brain lesion. J Neurosci 24(39):8500–8509. doi: 10.1523/JNEUROSCI.2451-04.2004 PubMedCrossRefGoogle Scholar
  151. Rappert A, Biber K, Nolte C, Lipp M, Schubel A, Lu B, Gerard NP, Gerard C, Boddeke HW, Kettenmann H (2002) Secondary lymphoid tissue chemokine (CCL21) activates CXCR3 to trigger a Cl- current and chemotaxis in murine microglia. J Immunol 168(7):3221–3226PubMedCrossRefGoogle Scholar
  152. Reed-Geaghan EG, Savage JC, Hise AG, Landreth GE (2009) CD14 and toll-like receptors 2 and 4 are required for fibrillar A{beta}-stimulated microglial activation. J Neurosci 29(38):11982–11992. doi: 10.1523/JNEUROSCI.3158-09.2009 29/38/11982[pii]PubMedPubMedCentralCrossRefGoogle Scholar
  153. Ribeiro Xavier AL, Kress BT, Goldman SA, Lacerda de Menezes JR, Nedergaard M (2015) A distinct population of microglia supports adult neurogenesis in the subventricular zone. J Neurosci 35(34):11848–11861. doi: 10.1523/JNEUROSCI.1217-15.2015 PubMedPubMedCentralCrossRefGoogle Scholar
  154. Rogers  JT, Morganti JM, Bachstetter AD, Hudson CE, Peters  MM, Grimmig BA, Weeber EJ, Bickford PC, Gemma C (2011) CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. J Neurosci 31:16241–16250Google Scholar
  155. Rolls A, Shechter R, London A, Ziv Y, Ronen A, Levy R, Schwartz M (2007) Toll-like receptors modulate adult hippocampal neurogenesis. Nat Cell Biol 9:1081–1088Google Scholar
  156. Roumier A, Bechade C, Poncer JC, Smalla KH, Tomasello E, Vivier E, Gundelfinger ED, Triller A, Bessis A (2004) Impaired synaptic function in the microglial KARAP/DAP12-deficient mouse. J Neurosci 24:11421–11428Google Scholar
  157. Rubartelli A, Lotze MT (2007) Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol 28(10):429–436. doi: 10.1016/j.it.2007.08.004 PubMedCrossRefGoogle Scholar
  158. Schafer  DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA, Stevens B (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705Google Scholar
  159. Schaffler A, Scholmerich J, Salzberger B (2007) Adipose tissue as an immunological organ: Toll-like receptors, C1q/TNFs and CTRPs. Trends Immunol 28(9):393–399. doi: 10.1016/j.it.2007.07.003 PubMedCrossRefGoogle Scholar
  160. Schilling T, Nitsch R, Heinemann U, Haas D, Eder C (2001) Astrocyte-released cytokines induce ramification and outward K+ channel expression in microglia via distinct signalling pathways. Eur J Neurosci 14(3):463–473PubMedCrossRefGoogle Scholar
  161. Schilling T, Stock C, Schwab A, Eder C (2004) Functional importance of Ca2+-activated K+ channels for lysophosphatidic acid-induced microglial migration. Eur J Neurosci 19(6):1469–1474. doi: 10.1111/j.1460-9568.2004.03265.x PubMedCrossRefGoogle Scholar
  162. Schmid AW, Lynch MA, Herron CE (2009) The effects of IL-1 receptor antagonist on beta amyloid mediated depression of LTP in the rat CA1 in vivo. Hippocampus 19:670–676Google Scholar
  163. Schwab A (2001) Ion channels and transporters on the move. News Physiol Sci Int J Physiol Produc Join Int Union Physiol Sci Am Physiol Soc 16:29–33Google Scholar
  164. Schwartz M, Butovsky O, Bruck W, Hanisch UK (2006) Microglial phenotype: is the commitment reversible? Trends Neurosci 29(2):68–74. doi: 10.1016/j.tins.2005.12.005 PubMedCrossRefGoogle Scholar
  165. Sedel F, Bechade C, Vyas S, Triller A (2004) Macrophage-derived tumor necrosis factor alpha, an early developmental signal for motoneuron death. J Neurosci 24(9):2236–2246. doi: 10.1523/JNEUROSCI.4464-03.2004 PubMedCrossRefGoogle Scholar
  166. Shechter R, London A, Varol C, Raposo C, Cusimano M, Yovel G, Rolls A, Mack M, Pluchino S, Martino G, Jung S, Schwartz M (2009) Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med 6(7):e1000113. doi: 10.1371/journal.pmed.1000113 PubMedPubMedCentralCrossRefGoogle Scholar
  167. Shie FS, Breyer RM, Montine TJ (2005) Microglia lacking E prostanoid receptor subtype 2 have enhanced Abeta phagocytosis yet lack Abeta-activated neurotoxicity. Am J Pathol 166(4):1163–1172PubMedPubMedCentralCrossRefGoogle Scholar
  168. Shigemoto-Mogami Y, Hoshikawa K, Goldman JE, Sekino Y, Sato K (2014) Microglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone. J Neurosci 34:2231–2243Google Scholar
  169. Sievers J, Schmidtmayer J, Parwaresch R (1994) Blood monocytes and spleen macrophages differentiate into microglia-like cells when cultured on astrocytes. Ann Anat Anatom Anz Off Organ Anatom Ges 176(1):45–51Google Scholar
  170. Simard AR, Soulet D, Gowing G, Julien JP, Rivest S (2006) Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 49(4):489–502. doi: 10.1016/j.neuron.2006.01.022 PubMedCrossRefGoogle Scholar
  171. Stence N, Waite M, Dailey ME (2001) Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 33(3):256–266PubMedCrossRefGoogle Scholar
  172. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SW, Barres BA (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131(6):1164–1178. doi: 10.1016/j.cell.2007.10.036 PubMedCrossRefGoogle Scholar
  173. Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A, Rayner KJ, Boyer L, Zhong R, Frazier WA, Lacy-Hulbert A, El Khoury J, Golenbock DT, Moore KJ (2010) CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol 11(2):155–161. doi: 10.1038/ni.1836 PubMedCrossRefGoogle Scholar
  174. Streit WJ, Conde JR, Fendrick SE, Flanary BE, Mariani CL (2005) Role of microglia in the central nervous system’s immune response. Neurol Res 27(7):685–691. doi: 10.1179/016164105X49463 PubMedGoogle Scholar
  175. Syed MM, Phulwani NK, Kielian T (2007) Tumor necrosis factor-alpha (TNF-alpha) regulates Toll-like receptor 2 (TLR2) expression in microglia. J Neurochem 103(4):1461–1471. doi: 10.1111/j.1471-4159.2007.04838.x PubMedCrossRefGoogle Scholar
  176. Tahara K, Kim HD, Jin JJ, Maxwell JA, Li L, Fukuchi K (2006) Role of toll-like receptor signalling in Abeta uptake and clearance. Brain 129(Pt 11):3006–3019. doi: 10.1093/brain/awl249 PubMedPubMedCentralCrossRefGoogle Scholar
  177. Tang G, Gudsnuk K, Kuo SH, Cotrina ML, Rosoklija G, Sosunov A, Sonders MS, Kanter E, Castagna C, Yamamoto A, Yue Z, Arancio O, Peterson BS, Champagne F, Dwork AJ, Goldman J, Sulzer D (2014) Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 83(5):1131–1143. doi: 10.1016/j.neuron.2014.07.040 PubMedPubMedCentralCrossRefGoogle Scholar
  178. Tichauer J, Saud K, von Bernhardi R (2007) Modulation by astrocytes of microglial cell-mediated neuroinflammation: effect on the activation of microglial signaling pathways. NeuroImmunoModulation 14(3–4):168–174PubMedCrossRefGoogle Scholar
  179. Tichauer JE, Flores B, Soler B, Eugenin-von Bernhardi L, Ramirez G, von Bernhardi R (2014) Age-dependent changes on TGFbeta1 Smad3 pathway modify the pattern of microglial cell activation. Brain Behav Immun 37:187–196. doi: 10.1016/j.bbi.2013.12.018 PubMedCrossRefGoogle Scholar
  180. Tichauer JE, von Bernhardi R (2012) Transforming growth factor-beta stimulates beta amyloid uptake by microglia through Smad3-dependent mechanisms. J Neurosci Res 90(10):1970–1980. doi: 10.1002/jnr.23082 PubMedCrossRefGoogle Scholar
  181. Trapp BD, Wujek JR, Criste GA, Jalabi W, Yin X, Kidd GJ, Stohlman S, Ransohoff R (2007) Evidence for synaptic stripping by cortical microglia. Glia 55(4):360–368. doi: 10.1002/glia.20462 PubMedCrossRefGoogle Scholar
  182. Trebst C, Konig F, Ransohoff R, Bruck W, Stangel M (2008) CCR5 expression on macrophages/microglia is associated with early remyelination in multiple sclerosis lesions. Mult Scler 14(6):728–733. doi: 10.1177/1352458508089359 PubMedCrossRefGoogle Scholar
  183. Umemori H, Sanes JR (2008) Signal regulatory proteins (SIRPS) are secreted presynaptic organizing molecules. J Biol Chem 283(49):34053–34061. doi: 10.1074/jbc.M805729200 PubMedPubMedCentralCrossRefGoogle Scholar
  184. van Rossum D, Hanisch UK (2004) Microglia. Metab Brain Dis 19(3–4):393–411PubMedCrossRefGoogle Scholar
  185. van Weering HR, Boddeke HW, Vinet J, Brouwer N, de Haas AH, van Rooijen N, Thomsen AR, Biber KP (2011) CXCL10/CXCR3 signaling in glia cells differentially affects NMDA-induced cell death in CA and DG neurons of the mouse hippocampus. Hippocampus 21(2):220–232. doi: 10.1002/hipo.20742 PubMedCrossRefGoogle Scholar
  186. von Bernhardi R (2007) Glial cell dysregulation: a new perspective on Alzheimer disease. Neurotox Res 12(4):215–232CrossRefGoogle Scholar
  187. von Bernhardi R, Cornejo F, Parada GE, Eugenin J (2015a) Role of TGFbeta signaling in the pathogenesis of Alzheimer’s disease. Front Cell Neurosci 9:426. doi: 10.3389/fncel.2015.00426 Google Scholar
  188. von Bernhardi R, Eugenin-von Bernhardi L, Eugenin J (2015b) Microglial cell dysregulation in brain aging and neurodegeneration. Front Aging Neurosci 7:124. doi: 10.3389/fnagi.2015.00124 Google Scholar
  189. von Bernhardi R, Eugenin J (2004) Microglial reactivity to beta-amyloid is modulated by astrocytes and proinflammatory factors. Brain Res 1–2:186–193. doi: 10.1016/j.brainres.2004.07.084 (1025)CrossRefGoogle Scholar
  190. von Bernhardi R, Eugenin J (2012) Alzheimer’s disease: redox dysregulation as a common denominator for diverse pathogenic mechanisms. Antioxid Redox Signal 16(9):974–1031. doi: 10.1089/ars.2011.4082 CrossRefGoogle Scholar
  191. von Bernhardi R, Ramírez G (2001) Microglia-astrocyte interaction in Alzheimer’s disease: friends or foes for the nervous system? Biol Res 34(2):123–128Google Scholar
  192. von Bernhardi R, Tichauer JE, Eugenin J (2010) Aging-dependent changes of microglial cells and their relevance for neurodegenerative disorders. J Neurochem 112(5):1099–1114. doi: 10.1111/j.1471-4159.2009.06537.x CrossRefGoogle Scholar
  193. Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29(13):3974–3980. doi: 10.1523/JNEUROSCI.4363-08.2009 PubMedCrossRefGoogle Scholar
  194. Walter L, Franklin A, Witting A, Wade C, Xie Y, Kunos G, Mackie K, Stella N (2003) Nonpsychotropic cannabinoid receptors regulate microglial cell migration. J Neurosci 23(4):1398–1405PubMedGoogle Scholar
  195. Walter S, Letiembre M, Liu Y, Heine H, Penke B, Hao W, Bode B, Manietta N, Walter J, Schulz-Schuffer W, Fassbender K (2007) Role of the toll-like receptor 4 in neuroinflammation in Alzheimer’s disease. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 20(6):947–956. doi: 10.1159/000110455 CrossRefGoogle Scholar
  196. Walton NM, Sutter BM, Laywell ED, Levkoff LH, Kearns SM, Marshall GP 2nd, Scheffler B, Steindler DA (2006) Microglia instruct subventricular zone neurogenesis. Glia 54(8):815–825. doi: 10.1002/glia.20419 PubMedCrossRefGoogle Scholar
  197. Webster SD, Yang AJ, Margol L, Garzon-Rodriguez W, Glabe CG, Tenner AJ (2000) Complement component C1q modulates the phagocytosis of Abeta by microglia. Exp Neurol 161(1):127–138. doi: 10.1006/exnr.1999.7260 PubMedCrossRefGoogle Scholar
  198. Witting A, Muller P, Herrmann A, Kettenmann H, Nolte C (2000) Phagocytic clearance of apoptotic neurons by Microglia/Brain macrophages in vitro: involvement of lectin-, integrin-, and phosphatidylserine-mediated recognition. J Neurochem 75(3):1060–1070PubMedCrossRefGoogle Scholar
  199. Yirmiya R, Rimmerman N, Reshef R (2015) Depression as a microglial disease. Trends Neurosci 38(10):637–658. doi: 10.1016/j.tins.2015.08.001 PubMedCrossRefGoogle Scholar
  200. Zhan Y, Paolicelli RC, Sforazzini F, Weinhard L, Bolasco G, Pagani F, Vyssotski AL, Bifone A, Gozzi A, Ragozzino D, Gross CT (2014) Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci 17(3):400–406. doi: 10.1038/nn.3641 PubMedCrossRefGoogle Scholar
  201. Ziegler G, Harhausen D, Schepers C, Hoffmann O, Rohr C, Prinz V, Konig J, Lehrach H, Nietfeld W, Trendelenburg G (2007) TLR2 has a detrimental role in mouse transient focal cerebral ischemia. Biochem Biophys Res Commun 359(3):574–579. doi: 10.1016/j.bbrc.2007.05.157 PubMedCrossRefGoogle Scholar
  202. Ziv Y, Ron N, Butovsky O, Landa G, Sudai E, Greenberg N, Cohen H, Kipnis J, Schwartz M (2006) Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci 9(2):268–275. doi: 10.1038/nn1629 PubMedCrossRefGoogle Scholar
  203. Ziv Y, Schwartz M (2008) Immune-based regulation of adult neurogenesis: implications for learning and memory. Brain Behav Immun 22(2):167–176. doi: 10.1016/j.bbi.2007.08.006 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Rommy von Bernhardi
    • 1
    Email author
  • Florencia Heredia
    • 1
  • Nicole Salgado
    • 1
  • Paola Muñoz
    • 1
  1. 1.Escuela de Medicina. Departamento de NeurologíaPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations