Advertisement

Pharmacological Tools to Study the Role of Astrocytes in Neural Network Functions

  • Fernando Peña-OrtegaEmail author
  • Ana Julia Rivera-Angulo
  • Jonathan Julio Lorea-Hernández
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 949)

Abstract

Despite that astrocytes and microglia do not communicate by electrical impulses, they can efficiently communicate among them, with each other and with neurons, to participate in complex neural functions requiring broad cell-communication and long-lasting regulation of brain function. Glial cells express many receptors in common with neurons; secrete gliotransmitters as well as neurotrophic and neuroinflammatory factors, which allow them to modulate synaptic transmission and neural excitability. All these properties allow glial cells to influence the activity of neuronal networks. Thus, the incorporation of glial cell function into the understanding of nervous system dynamics will provide a more accurate view of brain function. Our current knowledge of glial cell biology is providing us with experimental tools to explore their participation in neural network modulation. In this chapter, we review some of the classical, as well as some recent, pharmacological tools developed for the study of astrocyte’s influence in neural function. We also provide some examples of the use of these pharmacological agents to understand the role of astrocytes in neural network function and dysfunction.

Keywords

Astrocyte Microglia Aconitase Fluoroacetate Fluorocitrate Glutamine synthetase 

Abbreviations and Acronyms

ADP

Adenosine-diphosphate

ATP

Adenosine-triphosphate

BAPTA-AM

1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetrakis(acetoxymethyl ester)

BBB

Blood–Brain Barrier

cAMP

Cyclic adenosine monophosphate

CGa

Cystine–glutamate antiporter

CNS

Central Nervous System

Cox-2

Cyclooxygenese-2

Cx30

Connexin 30

Cx43

Connexin 43

FA

Fluoroacetate

FC

Fluorocitrate

GABA

Gamma-aminobutyric acid

GFAP

Glial Fibrillary Acidic Protein

GLAST

Glutamate Aspartate Transporter

GLT-1

Glial Glutamate Transporter 1

GS

Glutamine Synthetase

iNOS

Inducible Nitric Oxide Synthase

L5

Lumbar segment 5

L-AAA

L-alpha-aminoadipic acid

LTP

Long-Term Potentiation

MCT1

Monocarboxylate Transporter 1

MCT4

Monocarboxylate Transporter 4

MPTP

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MSO

L-methionine-S-sulfoximine

NMDA

N-methyl-D-aspartate

ONO-2506

(2R)-2-Propyloctanoic acid

PAR1

Protease-activated receptor 1

pH

-log [H+]

S100B

S100 Ca2+-binding protein B

TCAC

Tricaboxylic acid cycle

TeNT

Tetanus Neurotoxin

TgAPP(sw)

Transgenic mice carrying the amyloid precursor protein with the Swedish mutation

TFLLR

L-threonyl-L-phenylalanyl-L-leucyl-L-leucyl-L-argininamide

Notes

Acknowledgments

We thank Dr. Dorothy Pless for editorial comments. Ana Rivera-Angulo and Jonathan-Julio Lorea-Hernández are graduate students at UNAM and received fellowships from CONACyT. This study was supported by CONACyT Grants 235789, 24688, 117 and 181323; and by DGAPA-UNAM Grant IN200715.

References

  1. Agulhon C, Petravicz J, McMullen AB, Sweger EJ, Minton SK, Taves SR, Casper KB, Fiacco TA, McCarthy KD (2008) What is the role of astrocyte calcium in neurophysiology? Neuron 59(6):932–946Google Scholar
  2. Albrecht J, Jones EA (1999) Hepatic encephalopathy: molecular mechanisms underlying the clinical syndrome. J Neurol Sci 170(2):138–146PubMedCrossRefGoogle Scholar
  3. Allaman I, Bélanger M, Magistretti PJ (2011) Astrocyte-neuron metabolic relationships: for better and for worse. Trends Neurosci 34(2):76–87PubMedCrossRefGoogle Scholar
  4. Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22(5):208–215PubMedCrossRefGoogle Scholar
  5. Araque A, Martín ED, Perea G, Arellano JI, Buño W (2002) Synaptically released acetylcholine evokes Ca2+ elevations in astrocytes in hippocampal slices. J Neurosci 22(7):2443–2450PubMedGoogle Scholar
  6. Asano T, Mori T, Shimoda T, Shinagawa R, Satoh S, Yada N, Katsumata S, Matsuda S, Kagamiishi Y, Tateishi N (2005) Arundic acid (ONO-2506) ameliorates delayed ischemic brain damage by preventing astrocytic overproduction of S100B. Curr Drug Targets CNS Neurol Disord 4(2):127–142PubMedCrossRefGoogle Scholar
  7. Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Jacob Filho W, Lent R, Herculano-Houzel S (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513(5):532–541PubMedCrossRefGoogle Scholar
  8. Bacci A, Sancini G, Verderio C, Armano S, Pravettoni E, Fesce R, Franceschetti S, Matteoli M (2002) Block of glutamate-glutamine cycle between astrocytes and neurons inhibits epileptiform activity in hippocampus. J Neurophysiol 88(5):2302–2310PubMedCrossRefGoogle Scholar
  9. Balcaitis S, Xie Y, Weinstein JR, Andersen H, Hanisch UK, Ransom BR, Möller T (2003) Expression of proteinase-activated receptors in mouse microglial cells. NeuroReport 14(18):2373–2377PubMedCrossRefGoogle Scholar
  10. Banasr M, Duman RS (2008) Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors. Biol Psychiatry 64(10):863–870PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bandeira F, Lent R, Herculano-Houzel S (2009) Changing numbers of neuronal and non-neuronal cells underlie postnatal brain growth in the rat. Proc Natl Acad Sci USA 106(33):14108–14113PubMedPubMedCentralCrossRefGoogle Scholar
  12. Barres BA, Koroshetz WJ, Chun LL, Corey DP (1990) Ion channel expression by white matter glia: the type-1 astrocyte. Neuron 5(4):527–544PubMedCrossRefGoogle Scholar
  13. Bass NH, Hess HH, Pope A, Thalheimer C (1971) Quantitative cytoarchitectonic distribution of neurons, glia, and DNa in rat cerebral cortex. J Comp Neurol 143(4):481–490PubMedCrossRefGoogle Scholar
  14. Bélanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14(6):724–738PubMedCrossRefGoogle Scholar
  15. Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, Rizzini BL, Pozzan T, Volterra A (1998) Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391(6664):281–285PubMedCrossRefGoogle Scholar
  16. Blin M, Crusio WE, Hévor T, Cloix JF (2002) Chronic inhibition of glutamine synthetase is not associated with impairment of learning and memory in mice. Brain Res Bull 57(1):11–15PubMedCrossRefGoogle Scholar
  17. Bonansco C, Couve A, Perea G, Ferradas CÁ, Roncagliolo M, Fuenzalida M (2011) Glutamate released spontaneously from astrocytes sets the threshold for synaptic plasticity. Eur J Neurosci 33(8):1483–1492PubMedCrossRefGoogle Scholar
  18. Boven LA, Vergnolle N, Henry SD, Silva C, Imai Y, Holden J, Warren K, Hollenberg MD, Power C (2003) Up-regulation of proteinase-activated receptor 1 expression in astrocytes during HIV encephalitis. J Immunol 170(5):2638–2646PubMedCrossRefGoogle Scholar
  19. Bowser DN, Khakh BS (2007) Two forms of single-vesicle astrocyte exocytosis imaged with total internal reflection fluorescence microscopy. Proc Natl Acad Sci USA 104(10):4212–4217PubMedPubMedCentralCrossRefGoogle Scholar
  20. Brown DR, Kretzschmar HA (1998) The glio-toxic mechanism of alpha-aminoadipic acid on cultured astrocytes. J Neurocytol 27(2):109–118PubMedCrossRefGoogle Scholar
  21. Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22(1):183–192PubMedGoogle Scholar
  22. Canals S, Larrosa B, Pintor J, Mena MA, Herreras O (2008) Metabolic challenge to glia activates an adenosine-mediated safety mechanism that promotes neuronal survival by delaying the onset of spreading depression waves. J Cereb Blood Flow Metab 28(11):1835–1844PubMedCrossRefGoogle Scholar
  23. Carlsen EM, Perrier JF (2014) Purines released from astrocytes inhibit excitatory synaptic transmission in the ventral horn of the spinal cord. Front Neural Circuits 8:60PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chenoweth MB, St. John EF (1947) Studies on the pharmacology of fluoroacetate; effects on the central nervous systems of dogs and rabbits. J Pharmacol Exp Ther 90(1):76–82PubMedGoogle Scholar
  25. Christian CA, Huguenard JR (2013) Astrocytes potentiate GABAergic transmission in the thalamic reticular nucleus via endozepine signaling. Proc Natl Acad Sci USA 110(50):20278–20283PubMedPubMedCentralCrossRefGoogle Scholar
  26. Clarke DD (1991) Fluoroacetate and fluorocitrate: mechanism of action. Neurochem Res 16(9):1055–1058PubMedCrossRefGoogle Scholar
  27. Clarke DD, Nicklas WJ, Berl S (1970) Tricarboxylic acid-cycle metabolism in brain. Effect of fluoroacetate and fluorocitrate on the labelling of glutamate, aspartate, glutamine and gamma-aminobutyrate. Biochem J 120(2):345–351PubMedPubMedCentralCrossRefGoogle Scholar
  28. D’Amelio FE, Mehler WR, Gibbs MA, Eng LF, Wu JY (1987) Immunocytochemical localization of glutamic acid decarboxylase (GAD) and glutamine synthetase (GS) in the area postrema of the cat. Light and electron microscopy. Brain Res 410(2):232–244PubMedGoogle Scholar
  29. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65(1):1–105PubMedCrossRefGoogle Scholar
  30. Dhaher R, Damisah EC, Wang H, Gruenbaum SE, Ong C, Zaveri HP, Gruenbaum BF, Eid T (2014) 5-aminovaleric acid suppresses the development of severe seizures in the methionine sulfoximine model of mesial temporal lobe epilepsy. Neurobiol Dis 67:18–23PubMedPubMedCentralCrossRefGoogle Scholar
  31. Di Cesare Mannelli L, Pacini A, Micheli L, Tani A, Zanardelli M, Ghelardini C (2014) Glial role in oxaliplatin-induced neuropathic pain. Exp Neurol 261:22–33CrossRefGoogle Scholar
  32. Dombrowski SM, Hilgetag CC, Barbas H (2001) Quantitative architecture distinguishes prefrontal cortical systems in the rhesus monkey. Cereb Cortex 11(10):975–988PubMedCrossRefGoogle Scholar
  33. Domin H, Szewczyk B, Woźniak M, Wawrzak-Wleciał A, Śmiałowska M (2014) Antidepressant-like effect of the mGluR5 antagonist MTEP in an astroglial degeneration model of depression. Behav Brain Res 273:23–33PubMedCrossRefGoogle Scholar
  34. Duffy S, MacVicar BA (1995) Adrenergic calcium signaling in astrocyte networks within the hippocampal slice. J Neurosci 15(8):5535–5550PubMedGoogle Scholar
  35. Erlichman JS, Li A, Nattie EE (1998) Ventilatory effects of glial dysfunction in a rat brain stem chemoreceptor region. J Appl Physiol (1985) 85(5):1599-1604Google Scholar
  36. Fabrizi C, Pompili E, Panetta B, Nori SL, Fumagalli L (2009) Protease-activated receptor-1 regulates cytokine production and induces the suppressor of cytokine signaling-3 in microglia. Int J Mol Med 24(3):367–371PubMedCrossRefGoogle Scholar
  37. Fields RD, Araque A, Johansen-Berg H, Lim SS, Lynch G, Nave KA, Nedergaard M, Perez R, Sejnowski T, Wake H (2014) Glial biology in learning and cognition. Neuroscientist 20(5):426–431PubMedPubMedCentralCrossRefGoogle Scholar
  38. Fonnum F, Johnsen A, Hassel B (1997) Use of fluorocitrate and fluoroacetate in the study of brain metabolism. Glia 21(1):106–113PubMedCrossRefGoogle Scholar
  39. Friend WC, Clapoff S, Landry C, Becker LE, O’Hanlon D, Allore RJ, Brown IR, Marks A, Roder J, Dunn RJ (1992) Cell-specific expression of high levels of human S100 beta in transgenic mouse brain is dependent on gene dosage. J Neurosci 12(11):4337–4346PubMedGoogle Scholar
  40. Gesuete R, Orsini F, Zanier ER, Albani D, Deli MA, Bazzoni G, De Simoni MG (2011) Glial cells drive preconditioning-induced blood-brain barrier protection. Stroke 42(5):1445–1453PubMedCrossRefGoogle Scholar
  41. Gibbs ME, Bowser DN (2009) Astrocytes and interneurons in memory processing in the chick hippocampus: roles for G-coupled protein receptors, GABA(B) and mGluR1. Neurochem Res 34(10):1712–1720PubMedCrossRefGoogle Scholar
  42. Gibbs ME, Hertz L (2005) Importance of glutamate-generating metabolic pathways for memory consolidation in chicks. J Neurosci Res 81(2):293–300PubMedCrossRefGoogle Scholar
  43. Gibbs ME, Shleper M, Mustafa T, Burnstock G, Bowser DN (2011) ATP derived from astrocytes modulates memory in the chick. Neuron Glia Biol 7(2–4):177–186PubMedCrossRefGoogle Scholar
  44. Ginefri-Gayet M, Gayet J (1988) Study of the hypothermia induced by methionine sulfoximine in the rat. Pharmacol Biochem Behav 31(4):797–802PubMedCrossRefGoogle Scholar
  45. Gingrich MB, Junge CE, Lyuboslavsky P, Traynelis SF (2000) Potentiation of NMDA receptor function by the serine protease thrombin. J Neurosci 20(12):4582–4595PubMedGoogle Scholar
  46. Goldberg ND, Passonneau JV, Lowry OH (1966) Effects of changes in brain metabolism on the levels of citric acid cycle intermediates. J Biol Chem 241(17):3997–4003PubMedGoogle Scholar
  47. Gonçalves CA, Leite MC, Nardin P (2008) Biological and methodological features of the measurement of S100B, a putative marker of brain injury. Clin Biochem 41(10–11):755–763PubMedCrossRefGoogle Scholar
  48. Grabham P, Cunningham DD (1995) Thrombin receptor activation stimulates astrocyte proliferation and reversal of stellation by distinct pathways: involvement of tyrosine phosphorylation. J Neurochem 64(2):583–591PubMedCrossRefGoogle Scholar
  49. Gutierrez JA, Norenberg MD (1977) Ultrastructural study of methionine sulfoximine-induced Alzheimer type II astrocytosis. Am J Pathol 86(2):285–300PubMedPubMedCentralGoogle Scholar
  50. Hamilton NB, Attwell D (2010) Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci 11(4):227–238Google Scholar
  51. Han KS, Mannaioni G, Hamill CE, Lee J, Junge CE, Lee CJ, Traynelis SF (2011) Activation of protease activated receptor 1 increases the excitability of the dentate granule neurons of hippocampus. Mol Brain 4:32PubMedPubMedCentralCrossRefGoogle Scholar
  52. Han KS, Woo J, Park H, Yoon BJ, Choi S, Lee CJ (2013) Channel-mediated astrocytic glutamate release via Bestrophin-1 targets synaptic NMDARs. Mol Brain 6:4PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hanada M, Shinjo R, Miyagi M, Yasuda T, Tsutsumi K, Sugiura Y, Imagama S, Ishiguro N, Matsuyama Y (2014) Arundic acid (ONO-2506) inhibits secondary injury and improves motor function in rats with spinal cord injury. J Neurol Sci 337(1–2):186–192PubMedCrossRefGoogle Scholar
  54. Hassel B, Westergaard N, Schousboe A, Fonnum F (1995) Metabolic differences between primary cultures of astrocytes and neurons from cerebellum and cerebral cortex. Effects of fluorocitrate. Neurochem Res 20(4):413–420PubMedCrossRefGoogle Scholar
  55. Henneberger C, Papouin T, Oliet SH, Rusakov DA (2010) Long-term potentiation depends on release of D-serine from astrocytes. Nature 463(7278):232–236PubMedPubMedCentralCrossRefGoogle Scholar
  56. Henrich-Noack P, Riek-Burchardt M, Baldauf K, Reiser G, Reymann KG (2006) Focal ischemia induces expression of protease-activated receptor1 (PAR1) and AR3 on microglia and enhances PAR4 labeling in the penumbra. Brain Res 1070(1):232–241Google Scholar
  57. Hermann GE, Van Meter MJ, Rood JC, Rogers RC (2009) Proteinase-activated receptors in the nucleus of the solitary tract: evidence for glial-neural interactions in autonomic control of the stomach. J Neurosci 29(29):9292–9300PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hevor TK, Delorme P, Gayet J (1985) Glycogen content and fructose-1,6-biphosphatase activity in methionine sulfoximine epileptogenic mouse brain and liver after protein synthesis inhibition. Neuropathol Appl Neurobiol 11(2):129–139PubMedCrossRefGoogle Scholar
  59. Higashino H, Niwa A, Satou T, Ohta Y, Hashimoto S, Tabuchi M, Ooshima K (2009) Immunohistochemical analysis of brain lesions using S100B and glial fibrillary acidic protein antibodies in arundic acid- (ONO-2506) treated stroke-prone spontaneously hypertensive rats. J Neural Transm 116(10):1209–1219PubMedPubMedCentralCrossRefGoogle Scholar
  60. Holleran J, Babbie M, Erlichman JS (2001) Ventilatory effects of impaired glial function in a brain stem chemoreceptor region in the conscious rat. J Appl Physiol (1985) 90(4):1539–1547Google Scholar
  61. Hornfeldt CS, Larson AA (1990) Seizures induced by fluoroacetic acid and fluorocitric acid may involve chelation of divalent cations in the spinal cord. Eur J Pharmacol 179(3):307–313PubMedCrossRefGoogle Scholar
  62. Hu J, Van Eldik LJ (1996) S100 beta induces apoptotic cell death in cultured astrocytes via a nitric oxide-dependent pathway. Biochim Biophys Acta 1313(3):239–245PubMedCrossRefGoogle Scholar
  63. Huck S, Grass F, Hörtnagl H (1984) The glutamate analogue alpha-aminoadipic acid is taken up by astrocytes before exerting its gliotoxic effect in vitro. J Neurosci 4(10):2650–2657PubMedGoogle Scholar
  64. Hülsmann S, Oku Y, Zhang W, Richter DW (2000) Metabolic coupling between glia and neurons is necessary for maintaining respiratory activity in transverse medullary slices of neonatal mouse. Eur J Neurosci 12(3):856–862PubMedCrossRefGoogle Scholar
  65. Huxtable AG, Zwicker JD, Alvares TS, Ruangkittisakul A, Fang X, Hahn LB, Posse de Chaves E, Baker GB, Ballanyi K, Funk GD (2010) Glia contribute to the purinergic modulation of inspiratory rhythm-generating networks. J Neurosci 30(11):3947–3958PubMedCrossRefGoogle Scholar
  66. Ishida Y, Nagai A, Kobayashi S, Kim SU (2006) Upregulation of protease-activated receptor-1 in astrocytes in Parkinson disease: astrocyte-mediated neuroprotection through increased levels of glutathione peroxidase. J Neuropathol Exp Neurol 65(1):66–77PubMedCrossRefGoogle Scholar
  67. Janzer RC, Raff MC (1987) Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325(6101):253–257PubMedCrossRefGoogle Scholar
  68. Ji K, Miyauchi J, Tsirka SE (2013) Microglia: an active player in the regulation of synaptic activity. Neural Plast 2013:627325PubMedPubMedCentralGoogle Scholar
  69. Junge CE, Lee CJ, Hubbard KB, Zhang Z, Olson JJ, Hepler JR, Brat DJ, Traynelis SF (2004) Protease-activated receptor-1 in human brain: localization and functional expression in astrocytes. Exp Neurol 188(1):94–103PubMedCrossRefGoogle Scholar
  70. Kato H, Kurosaki R, Oki C, Araki T (2004) Arundic acid, an astrocyte-modulating agent, protects dopaminergic neurons against MPTP neurotoxicity in mice. Brain Res 1030(1):66–73Google Scholar
  71. Kato H, Araki T, Imai Y, Takahashi A, Itoyama Y (2003) Protection of dopaminergic neurons with a novel astrocyte modulating agent (R)-(-)-2-propyloctanoic acid (ONO-2506) in an MPTP-mouse model of Parkinson’s disease. J Neurol Sci 208(1–2):9–15PubMedCrossRefGoogle Scholar
  72. Katsumata S, Tateishi N, Kagamiishi Y, Shintaku K, Hayakawa T, Shimoda T, Shinagawa R, Akiyama T, Katsube N (1999) Inhibitory effect of ONO-2506 on GABAA receptor disappearance in cultured astrocytes and ischemic brain. Soc Neurosci Abs 25(843):11Google Scholar
  73. Keyser DO, Pellmar TC (1994) Synaptic transmission in the hippocampus: critical role for glial cells. Glia 10(4):237–243PubMedCrossRefGoogle Scholar
  74. Kortvely E, Varszegi S, Palfi A, Gulya K (2003) Intracellular targeting of calmodulin mRNAs in primary hippocampal cells. J Histochem Cytochem 51(4):541–544PubMedCrossRefGoogle Scholar
  75. Lalo U, Rasooli-Nejad S, Pankratov Y (2014a) Exocytosis of gliotransmitters from cortical astrocytes: implications for synaptic plasticity and aging. Biochem Soc Trans 42(5):1275–1281PubMedCrossRefGoogle Scholar
  76. Lalo U, Palygin O, Rasooli-Nejad S, Andrew J, Haydon PG, Pankratov Y (2014b) Exocytosis of ATP from astrocytes modulates phasic and tonic inhibition in the neocortex. PLoS Biol 12(1):e1001747PubMedPubMedCentralCrossRefGoogle Scholar
  77. Lam AG, Koppal T, Akama KT, Guo L, Craft JM, Samy B, Schavocky JP, Watterson DM, Van Eldik LJ (2001) Mechanism of glial activation by S100B: involvement of the transcription factor NFkappaB. Neurobiol Aging 22(5):765–772PubMedCrossRefGoogle Scholar
  78. Largo C, Cuevas P, Somjen GG, Martín del Río R, Herreras O (1996) The effect of depressing glial function in rat brain in situ on ion homeostasis, synaptic transmission, and neuron survival. J Neurosci 16(3):1219–1229PubMedGoogle Scholar
  79. Laskowski A, Reiser G, Reymann KG (2007) Protease-activated receptor-1 induces generation of new microglia in the dentate gyrus of traumatised hippocampal slice cultures. Neurosci Lett 415(1):17–21PubMedCrossRefGoogle Scholar
  80. Lee CJ, Mannaioni G, Yuan H, Woo DH, Gingrich MB, Traynelis SF (2007) Astrocytic control of synaptic NMDA receptors. J Physiol 581(Pt 3):1057–1081PubMedPubMedCentralCrossRefGoogle Scholar
  81. Lee Y, Son H, Kim G, Kim S, Lee DH, Roh GS, Kang SS, Cho GJ, Choi WS, Kim HJ (2013) Glutamine deficiency in the prefrontal cortex increases depressive-like behaviours in male mice. J Psychiatry Neurosci 38(3):183–191PubMedPubMedCentralCrossRefGoogle Scholar
  82. Lee HS, Ghetti A, Pinto-Duarte A, Wang X, Dziewczapolski G, Galimi F, Huitron-Resendiz S, Piña-Crespo JC, Roberts AJ, Verma IM, Sejnowski TJ, Heinemann SF (2014) Astrocytes contribute to gamma oscillations and recognition memory. Proc Natl Acad Sci USA 111(32):E3343–E3352PubMedPubMedCentralCrossRefGoogle Scholar
  83. Leffler CW, Parfenova H, Fedinec AL, Basuroy S, Tcheranova D (2006) Contributions of astrocytes and CO to pial arteriolar dilation to glutamate in newborn pigs. Am J Physiol Heart Circ Physiol 291(6):H2897–H2904PubMedPubMedCentralCrossRefGoogle Scholar
  84. Liang SL, Carlson GC, Coulter DA (2006) Dynamic regulation of synaptic GABA release by the glutamate-glutamine cycle in hippocampal area CA1. J Neurosci 26(33):8537–8548PubMedPubMedCentralCrossRefGoogle Scholar
  85. Lillo C, Velasco A, Jimeno D, Cid E, Lara JM, Aijón J (2002) The glial design of a teleost optic nerve head supporting continuous growth. J Histochem Cytochem 50(10):1289–1302PubMedCrossRefGoogle Scholar
  86. Lima A, Sardinha VM, Oliveira AF, Reis M, Mota C, Silva MA, Marques F, Cerqueira JJ, Pinto L, Sousa N, Oliveira JF (2014) Astrocyte pathology in the prefrontal cortex impairs the cognitive function of rats. Mol Psychiatry 19(7):834–841PubMedCrossRefGoogle Scholar
  87. Liu QS, Xu Q, Arcuino G, Kang J, Nedergaard M (2004) Astrocyte-mediated activation of neuronal kainate receptors. Proc Natl Acad Sci USA 101(9):3172–3177PubMedPubMedCentralCrossRefGoogle Scholar
  88. Liu T, Sun L, Xiong Y, Shang S, Guo N, Teng S, Wang Y, Liu B, Wang C, Wang L, Zheng L, Zhang CX, Han W, Zhou Z (2011) Calcium triggers exocytosis from two types of organelles in a single astrocyte. J Neurosci 31(29):10593–10601PubMedCrossRefGoogle Scholar
  89. Liu FY, Sun YN, Wang FT, Li Q, Su L, Zhao ZF, Meng XL, Zhao H, Wu X, Sun Q, Xing GG, Wan Y (2012) Activation of satellite glial cells in lumbar dorsal root ganglia contributes to neuropathic pain after spinal nerve ligation. Brain Res 1427:65–77PubMedCrossRefGoogle Scholar
  90. Lorea-Hernández JJ, Morales T, Rivera-Angulo AJ, Alcantara-Gonzalez D, Peña-Ortega F (2016) Microglia modulate respiratory rhythm generation and autoresuscitation. Glia 64(4):603-619Google Scholar
  91. Ludwin SK, Kosek JC, Eng LF (1976) The topographical distribution of S-100 and GFA proteins in the adult rat brain: an immunohistochemical study using horseradish peroxidase-labelled antibodies. J Comp Neurol 165(2):197–207PubMedCrossRefGoogle Scholar
  92. Martín ED, Fernández M, Perea G, Pascual O, Haydon PG, Araque A, Ceña V (2007) Adenosine released by astrocytes contributes to hypoxia-induced modulation of synaptic transmission. Glia 55(1):36–45PubMedCrossRefGoogle Scholar
  93. Martinez-Hernandez A, Bell KP, Norenberg MD (1977) Glutamine synthetase: glial localization in brain. Science 195(4284):1356–1358PubMedCrossRefGoogle Scholar
  94. McCarthy KD, Salm AK (1991) Pharmacologically-distinct subsets of astroglia can be identified by their calcium response to neuroligands. Neuroscience 41(2–3):325–333PubMedCrossRefGoogle Scholar
  95. Möller T, Hanisch UK, Ransom BR (2000) Thrombin-induced activation of cultured rodent microglia. J Neurochem 75(4):1539–1547PubMedCrossRefGoogle Scholar
  96. Moraga-Amaro R, Jerez-Baraona JM, Simon F, Stehberg J (2014) Role of astrocytes in memory and psychiatric disorders. J Physiol Paris 108(4–6):240–251PubMedCrossRefGoogle Scholar
  97. Mori T, Town T, Tan J, Tateishi N, Asano T (2005) Modulation of astrocytic activation by arundic acid (ONO-2506) mitigates detrimental effects of the apolipoprotein E4 isoform after permanent focal ischemia in apolipoprotein E knock-in mice. J Cereb Blood Flow Metab 25(6):748–762PubMedCrossRefGoogle Scholar
  98. Muramatsu Y, Kurosaki R, Watanabe H, Michimata M, Matsubara M, Imai Y, Araki T (2003) Expression of S-100 protein is related to neuronal damage in MPTP-treated mice. Glia 42(3):307–313PubMedCrossRefGoogle Scholar
  99. Nagelhus EA, Ottersen OP (2013) Physiological roles of aquaporin-4 in brain. Physiol Rev 93(4):1543–1562PubMedPubMedCentralCrossRefGoogle Scholar
  100. Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26(10):523–530PubMedCrossRefGoogle Scholar
  101. Newman LA, Korol DL, Gold PE (2011) Lactate produced by glycogenolysis in astrocytes regulates memory processing. PLoS ONE 6(12):e28427PubMedPubMedCentralCrossRefGoogle Scholar
  102. Nishiyama H, Knopfel T, Endo S, Itohara S (2002) Glial protein S100B modulates long-term neuronal synaptic plasticity. Proc Natl Acad Sci USA 99(6):4037–4042PubMedPubMedCentralCrossRefGoogle Scholar
  103. Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161(2):303–310PubMedCrossRefGoogle Scholar
  104. Oberheim NA, Takano T, Han X, He W, Lin JH, Wang F, Xu Q, Wyatt JD, Pilcher W, Ojemann JG, Ransom BR, Goldman SA, Nedergaard M (2009) Uniquely hominid features of adult human astrocytes. J Neurosci 29(10):3276–3287PubMedPubMedCentralCrossRefGoogle Scholar
  105. Oh SJ, Han KS, Park H, Woo DH, Kim HY, Traynelis SF, Lee CJ (2012) Protease activated receptor 1-induced glutamate release in cultured astrocytes is mediated by Bestrophin-1 channel but not by vesicular exocytosis. Mol Brain 5:38PubMedPubMedCentralCrossRefGoogle Scholar
  106. Okada-Ogawa A, Suzuki I, Sessle BJ, Chiang CY, Salter MW, Dostrovsky JO, Tsuboi Y, Kondo M, Kitagawa J, Kobayashi A, Noma N, Imamura Y, Iwata K (2009) Astroglia in medullary dorsal horn (trigeminal spinal subnucleus caudalis) are involved in trigeminal neuropathic pain mechanisms. J Neurosci 29(36):11161–11171PubMedPubMedCentralCrossRefGoogle Scholar
  107. Olney JW, Ho OL, Rhee V (1971) Cytotoxic effects of acidic and sulphur containing amino acids on the infant mouse central nervous system. Exp Brain Res 14(1):61–76PubMedCrossRefGoogle Scholar
  108. Otis TS, Jahr CE (1998) Anion currents and predicted glutamate flux through a neuronal glutamate transporter. J Neurosci 18(18):7099–7110PubMedGoogle Scholar
  109. Pannasch U, Vargová L, Reingruber J, Ezan P, Holcman D, Giaume C, Syková E, Rouach N (2011) Astroglial networks scale synaptic activity and plasticity. Proc Natl Acad Sci USA 108(20):8467–8472PubMedPubMedCentralCrossRefGoogle Scholar
  110. Pannasch U, Freche D, Dallérac G, Ghézali G, Escartin C, Ezan P, Cohen-Salmon M, Benchenane K, Abudara V, Dufour A, Lübke JH, Déglon N, Knott G, Holcman D, Rouach N (2014) Connexin 30 sets synaptic strength by controlling astroglial synapse invasion. Nat Neurosci 17(4):549–558PubMedCrossRefGoogle Scholar
  111. Paulsen RE, Contestabile A, Villani L, Fonnum F (1987) An in vivo model for studying function of brain tissue temporarily devoid of glial cell metabolism: the use of fluorocitrate. J Neurochem 48(5):1377–1385PubMedCrossRefGoogle Scholar
  112. Peña-Ortega F (2012) Tonic neuromodulation of the inspiratory rhythm generator. Front Physiol 3:253PubMedPubMedCentralCrossRefGoogle Scholar
  113. Perea G, Araque A (2005) Glial calcium signaling and neuron-glia communication. Cell Calcium 38(3–4):375–382PubMedCrossRefGoogle Scholar
  114. Perea G, Yang A, Boyden ES, Sur M (2014) Optogenetic astrocyte activation modulates response selectivity of visual cortex neurons in vivo. Nat Commun 5:3262PubMedPubMedCentralCrossRefGoogle Scholar
  115. Petroff OA, Errante LD, Rothman DL, Kim JH, Spencer DD (2002) Glutamate-glutamine cycling in the epileptic human hippocampus. Epilepsia 43(7):703–710PubMedCrossRefGoogle Scholar
  116. Petrova TV, Hu J, Van Eldik LJ (2000) Modulation of glial activation by astrocyte-derived protein S100B: differential responses of astrocyte and microglial cultures. Brain Res 853(1):74–80PubMedCrossRefGoogle Scholar
  117. Pompili E, Fabrizi C, Nori SL, Panetta B, Geloso MC, Corvino V, Michetti F, Fumagalli L (2011) Protease-activated receptor-1 expression in rat microglia after trimethyltin treatment. J Histochem Cytochem 59(3):302–311PubMedPubMedCentralCrossRefGoogle Scholar
  118. Pow DV (2001) Visualising the activity of the cystine-glutamate antiporter in glial cells using antibodies to aminoadipic acid, a selectively transported substrate. Glia 34(1):27–38PubMedCrossRefGoogle Scholar
  119. Ramirez JM, Tryba AK, Peña F (2004) Pacemaker neurons and neuronal networks: anintegrative view. Curr Opin Neurobiol 14(6):665–674PubMedCrossRefGoogle Scholar
  120. Ransom B, Behar T, Nedergaard M (2003) New roles for astrocytes (stars at last). Trends Neurosci 26(10):520–522PubMedCrossRefGoogle Scholar
  121. Reeves RH, Yao J, Crowley MR, Buck S, Zhang X, Yarowsky P, Gearhart JD, Hilt DC (1994) Astrocytosis and axonal proliferation in the hippocampus of S100b transgenic mice. Proc Natl Acad Sci USA 91(12):5359–5363PubMedPubMedCentralCrossRefGoogle Scholar
  122. Reichenbach A (1989) Glia:neuron index: review and hypothesis to account for different values in various mammals. Glia 2(2):71–77PubMedCrossRefGoogle Scholar
  123. Ren JQ, Aika Y, Heizmann CW, Kosaka T (1992) Quantitative analysis of neurons and glial cells in the rat somatosensory cortex, with special reference to GABAergic neurons and parvalbumin-containing neurons. Exp Brain Res 92(1):1–14PubMedCrossRefGoogle Scholar
  124. Ridet JL, Malhotra SK, Privat A, Gage FH (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20(12):570–577PubMedCrossRefGoogle Scholar
  125. Roder JK, Roder JC, Gerlai R (1996) Memory and the effect of cold shock in the water maze in S100 beta transgenic mice. Physiol Behav 60(2):611–615PubMedCrossRefGoogle Scholar
  126. Rodríguez MJ, Martínez-Sánchez M, Bernal F, Mahy N (2004) Heterogeneity between hippocampal and septal astroglia as a contributing factor to differential in vivo AMPA excitotoxicity. J Neurosci Res 77(3):344–353PubMedCrossRefGoogle Scholar
  127. Romero-Alemán Mdel M, Monzón-Mayor M, Yanes C, Arbelo-Galván JF, Lang D, Renau-Piqueras J, Negrín-Martínez C (2003) S100 immunoreactive glial cells in the forebrain and midbrain of the lizard Gallotia galloti during ontogeny. J Neurobiol 57(1):54–66PubMedCrossRefGoogle Scholar
  128. Rothermundt M, Peters M, Prehn JH, Arolt V (2003) S100B in brain damage and neurodegeneration. Microsc Res Tech 60(6):614–632PubMedCrossRefGoogle Scholar
  129. Sá Santos S, Sonnewald U, Carrondo MJ, Alves PM (2011) The role of glia in neuronal recovery following anoxia: In vitro evidence of neuronal adaptation. Neurochem Int 58(6):665–675PubMedCrossRefGoogle Scholar
  130. Santello M, Calì C, Bezzi P (2012) Gliotransmission and the tripartite synapse. Adv Exp Med Biol 970:307–331PubMedCrossRefGoogle Scholar
  131. Sasaki T, Ishikawa T, Abe R, Nakayama R, Asada A, Matsuki N, Ikegaya Y (2014) Astrocyte calcium signalling orchestrates neuronal synchronization in organotypic hippocampal slices. J Physiol 592(Pt 13):2771–2783PubMedPubMedCentralCrossRefGoogle Scholar
  132. Scarisbrick IA, Radulovic M, Burda JE, Larson N, Blaber SI, Giannini C, Blaber M, Vandell AG (2012) Kallikrein 6 is a novel molecular trigger of reactive astrogliosis. Biol Chem 393(5):355–367PubMedPubMedCentralCrossRefGoogle Scholar
  133. Shang XL, Wang QB, Liu XP, Yao XQ, Cao FY, Wang Q, Zhang JY, Wang JZ, Liu GP (2015) Fluorocitrate induced the alterations of memory-related proteins and tau hyperphosphorylation in SD rats. Neurosci Lett 584:230–235PubMedCrossRefGoogle Scholar
  134. Shapiro LA, Wang L, Ribak CE (2008) Rapid astrocyte and microglial activation following pilocarpine-induced seizures in rats. Epilepsia 49(Suppl 2):33–41PubMedCrossRefGoogle Scholar
  135. Shavit E, Michaelson DM, Chapman J (2011) Anatomical localization of protease-activated receptor-1 and protease-mediated neuroglial crosstalk on peri-synaptic astrocytic endfeet. J Neurochem 119(3):460–473PubMedCrossRefGoogle Scholar
  136. Shelton MK, McCarthy KD (2000) Hippocampal astrocytes exhibit Ca2 + -elevating muscarinic cholinergic and histaminergic receptors in situ. J Neurochem 74(2):555–563PubMedCrossRefGoogle Scholar
  137. Sherwood CC, Stimpson CD, Raghanti MA, Wildman DE, Uddin M, Grossman LI, Goodman M, Redmond JC, Bonar CJ, Erwin JM, Hof PR (2006) Evolution of increased glia-neuron ratios in the human frontal cortex. Proc Natl Acad Sci USA 103(37):13606–13611PubMedPubMedCentralCrossRefGoogle Scholar
  138. Shibuki K, Gomi H, Chen L, Bao S, Kim JJ, Wakatsuki H, Fujisaki T, Fujimoto K, Katoh A, Ikeda T, Chen C, Thompson RF, Itohara S (1996) Deficient cerebellar long-term depression, impaired eyeblink conditioning, and normal motor coordination in GFAP mutant mice. Neuron 16(3):587–599PubMedCrossRefGoogle Scholar
  139. Shigetomi E, Bowser DN, Sofroniew MV, Khakh BS (2008) Two forms of astrocyte calcium excitability have distinct effects on NMDA receptor-mediated slow inward currents in pyramidal neurons. J Neurosci 28(26):6659–6663PubMedPubMedCentralCrossRefGoogle Scholar
  140. Shimoda T, Tateishi K, Shintaku K, Shintaku K, Yada N, Katagi J, Akiyama T, Maekawa H, Shinagawa R, Kondo K (1998) ONO-2506, a novel astrocyte modulating agent, suppresses the increase of COX-2 and iNOSmRNA expression in cultured astrocytes and ischemic brain. Soc Neurosci 24(384):13Google Scholar
  141. Shinagawa R, Tateishi N, Shimoda T, Shintaku K, Yada N, Honjo K, Kagamiishi Y, Kondo K (1998) ONO-2506 ameliorates neurodegeneration through inhibition of reduction of GLT-1 expression. Soc Neurosci Abs 24(384):14Google Scholar
  142. Shinagawa R, Tateishi N, Shimoda T, Maekawa H, Yada N, Akiyama T, Matsuda S, Katsube N (1999) Modulating effects of ONO-2506 on astrocytic activation in cultured astrocytes from rat cerebrum. Soc Neurosci Abs 25(843):10Google Scholar
  143. Somers DL, Beckstead RM (1990) Chronic methionine sulfoximine administration reduces synaptosomal aspartate and glutamate in rat striatum. Neurosci Lett 115(2–3):335–340PubMedCrossRefGoogle Scholar
  144. Somjen GG (1988) Nervenkitt: notes on the history of the concept of neuroglia. Glia 1(1):2–9PubMedCrossRefGoogle Scholar
  145. Sorensen SD, Nicole O, Peavy RD, Montoya LM, Lee CJ, Murphy TJ, Traynelis SF, Hepler JR (2003) Common signaling pathways link activation of murine PAR1, LPA, and S1P receptors to proliferation of astrocytes. Mol Pharmacol 64(5):1199–1209PubMedCrossRefGoogle Scholar
  146. Stransky Z (1969) Time course of rat brain GABA levels following methionine sulphoximine treatment. Nature 224(5219):612–613PubMedCrossRefGoogle Scholar
  147. Striggow F, Riek-Burchardt M, Kiesel A, Schmidt W, Henrich-Noack P, Breder J, Krug M, Reymann KG, Reiser G (2001) Four different types of protease-activated receptors are widely expressed in the brain and are up-regulated in hippocampus by severe ischemia. Eur J Neurosci 14(4):595–608PubMedCrossRefGoogle Scholar
  148. Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100(1):64–119PubMedCrossRefGoogle Scholar
  149. Sun ML, Yu HX, Han Y, Tian J, Yu YQ (2013) Glial modulation of vibrissal sensory processing in rats. Chin J Physiol 56(6):309–317PubMedCrossRefGoogle Scholar
  150. Suo Z, Wu M, Ameenuddin S, Anderson HE, Zoloty JE, Citron BA, Andrade-Gordon P, Festoff BW (2002) Participation of protease-activated receptor-1 in thrombin-induced microglial activation. J Neurochem 80(4):655–666PubMedCrossRefGoogle Scholar
  151. Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, Alberini CM (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144(5):810–823PubMedPubMedCentralCrossRefGoogle Scholar
  152. Swanson RA, Graham SH (1994) Fluorocitrate and fluoroacetate effects on astrocyte metabolism in vitro. Brain Res 664(1–2):94–100PubMedCrossRefGoogle Scholar
  153. Takada M, Hattori T (1986) Fine structural changes in the rat brain after local injections of gliotoxin, alpha-aminoadipic acid. Histol Histopathol 1(3):271–275PubMedGoogle Scholar
  154. Tanahashi S, Yamamura S, Nakagawa M, Motomura E, Okada M (2012) Clozapine, but not haloperidol, enhances glial D-serine and L-glutamate release in rat frontal cortex and primary cultured astrocytes. Br J Pharmacol 165(5):1543–1555PubMedPubMedCentralCrossRefGoogle Scholar
  155. Tanigami H, Rebel A, Martin LJ, Chen TY, Brusilow SW, Traystman RJ, Koehler RC (2005a) Effect of glutamine synthetase inhibition on astrocyte swelling and altered astroglial protein expression during hyperammonemia in rats. Neuroscience 131(2):437–449PubMedPubMedCentralCrossRefGoogle Scholar
  156. Tanigami H, Rebel A, Martin LJ, Chen TY, Brusilow SW, Traystman RJ, Koehler RC (2005b) Effect of glutamine synthetase inhibition on astrocyte swelling and altered astroglial protein expression during hyperammonemia in rats. Neuroscience 131(2):437–449PubMedPubMedCentralCrossRefGoogle Scholar
  157. Tateishi N, Mori T, Kagamiishi Y, Satoh S, Katsube N, Morikawa E, Morimoto T, Matsui T, Asano T (2002) Astrocytic activation and delayed infarct expansion after permanent focal ischemia in rats. Part II: suppression of astrocytic activation by a novel agent (R)-(-)-2-propyloctanoic acid (ONO-2506) leads to mitigation of delayed infarct expansion and early improvement of neurologic deficits. J Cereb Blood Flow Metab 22(6):723–734PubMedCrossRefGoogle Scholar
  158. Theis M, Jauch R, Zhuo L, Speidel D, Wallraff A, Döring B, Frisch C, Söhl G, Teubner B, Euwens C, Huston J, Steinhäuser C, Messing A, Heinemann U, Willecke K (2003) Accelerated hippocampal spreading depression and enhanced locomotory activity in mice with astrocyte-directed inactivation of connexin43. J Neurosci 23(3):766–776PubMedGoogle Scholar
  159. Tremblay MÈ, Majewska AK (2011) A role for microglia in synaptic plasticity? Commun Integr Biol 4(2):220–222PubMedPubMedCentralCrossRefGoogle Scholar
  160. Trias E, Díaz-Amarilla P, Olivera-Bravo S, Isasi E, Drechsel DA, Lopez N, Bradford CS, Ireton KE, Beckman JS, Barbeito L (2013) Phenotypic transition of microglia into astrocyte-like cells associated with disease onset in a model of inherited ALS. Front Cell Neurosci 7:274PubMedPubMedCentralCrossRefGoogle Scholar
  161. Van Wagoner NJ, Oh JW, Repovic P, Benveniste EN (1999) Interleukin-6 (IL-6) production by astrocytes: autocrine regulation by IL-6 and the soluble IL-6 receptor. J Neurosci 19(13):5236–5244PubMedGoogle Scholar
  162. Vandell AG, Larson N, Laxmikanthan G, Panos M, Blaber SI, Blaber M, Scarisbrick IA (2008) Protease-activated receptor dependent and independent signaling by kallikreins 1 and 6 in CNS neuron and astroglial cell lines. J Neurochem 107(3):855–870PubMedPubMedCentralCrossRefGoogle Scholar
  163. Vellani V, Kinsey AM, Prandini M, Hechtfischer SC, Reeh P, Magherini PC, Giacomoni C, McNaughton PA (2010) Protease activated receptors 1 and 4 sensitize TRPV1 in nociceptive neurones. Mol Pain 6:61PubMedPubMedCentralCrossRefGoogle Scholar
  164. Vives V, Alonso G, Solal AC, Joubert D, Legraverend C (2003) Visualization of S100B-positive neurons and glia in the central nervous system of EGFP transgenic mice. J Comp Neurol 457(4):404–419PubMedCrossRefGoogle Scholar
  165. Wajima D, Nakagawa I, Nakase H, Yonezawa T (2013) Neuroprotective effect of suppression of astrocytic activation by arundic acid on brain injuries in rats with acute subdural hematomas. Brain Res 1519:127–135PubMedCrossRefGoogle Scholar
  166. Wall MJ, Dale N (2013) Neuronal transporter and astrocytic ATP exocytosis underlie activity-dependent adenosine release in the hippocampus. J Physiol 591(Pt 16):3853–3871PubMedPubMedCentralCrossRefGoogle Scholar
  167. Wang H, Ubl JJ, Stricker R, Reiser G (2002a) Thrombin (PAR1)-induced proliferation in astrocytes via MAPK involves multiple signaling pathways. Am J Physiol Cell Physiol 283(5):C1351–C1364PubMedCrossRefGoogle Scholar
  168. Wang H, Ubl JJ, Reiser G (2002b) Four subtypes of protease-activated receptors, co-expressed in rat astrocytes, evoke different physiological signaling. Glia 37(1):53–63PubMedCrossRefGoogle Scholar
  169. Wang Y, Zaveri HP, Lee TS, Eid T (2009a) The development of recurrent seizures after continuous intrahippocampal infusion of methionine sulfoximine in rats: a video-intracranial electroencephalographic study. Exp Neurol 220(2):293–302PubMedPubMedCentralCrossRefGoogle Scholar
  170. Wang L, Li CC, Wang GW, Cai JX (2009b) The effects of centrally administered fluorocitrate via inhibiting glial cells on working memory in rats. Sci China C Life Sci 52(8):701–709PubMedCrossRefGoogle Scholar
  171. Wang H, Zhang L, Zhang IY, Chen X, Da Fonseca A, Wu S, Ren H, Badie S, Sadeghi S, Ouyang M, Warden CD, Badie B (2013) S100B promotes glioma growth through chemoattraction of myeloid-derived macrophages. Clin Cancer Res 19(14):3764–3775PubMedPubMedCentralCrossRefGoogle Scholar
  172. Ward AA Jr (1947) Convulsive activity induced by fluoroacetate. J Neurophysiol 10(2):105–111PubMedGoogle Scholar
  173. Westergaard N, Sonnewald U, Schousboe A (1995) Metabolic trafficking between neurons and astrocytes: the glutamate/glutamine cycle revisited. Dev Neurosci 17(4):203–211PubMedCrossRefGoogle Scholar
  174. Willoughby JO, Mackenzie L, Broberg M, Thoren AE, Medvedev A, Sims NR, Nilsson M (2003) Fluorocitrate-mediated astroglial dysfunction causes seizures. J Neurosci Res 74(1):160–166PubMedCrossRefGoogle Scholar
  175. Woo DH, Han KS, Shim JW, Yoon BE, Kim E, Bae JY, Oh SJ, Hwang EM, Marmorstein AD, Bae YC, Park JY, Lee CJ (2012) TREK-1 and Best1 channels mediate fast and slow glutamate release in astrocytes upon GPCR activation. Cell 151(1):25–40PubMedCrossRefGoogle Scholar
  176. Xu HL, Koenig HM, Ye S, Feinstein DL, Pelligrino DA (2004) Influence of the glia limitans on pial arteriolar relaxation in the rat. Am J Physiol Heart Circ Physiol 287(1):H331–H339PubMedCrossRefGoogle Scholar
  177. Yamamura S, Hoshikawa M, Dai K, Saito H, Suzuki N, Niwa O, Okada M (2013) ONO-2506 inhibits spike-wave discharges in a genetic animal model without affecting traditional convulsive tests via gliotransmission regulation. Br J Pharmacol 168(5):1088–1100PubMedPubMedCentralCrossRefGoogle Scholar
  178. Yang Y, Akiyama H, Fenton JW 2nd, Brewer GJ (1997) Thrombin receptor on rat primary hippocampal neurons: coupled calcium and cAMP responses. Brain Res 761(1):11–18PubMedCrossRefGoogle Scholar
  179. Yasuda Y, Tateishi N, Shimoda T, Satoh S, Ogitani E, Fujita S (2004) Relationship between S100beta and GFAP expression in astrocytes during infarction and glial scar formation after mild transient ischemia. Brain Res 1021(1):20–31Google Scholar
  180. Yoo SS, Hu PT, Gujar N, Jolesz FA, Walker MP (2007) A deficit in the ability to form new human memories without sleep. Nat Neurosci 10(3):385–392PubMedCrossRefGoogle Scholar
  181. Young JK, Dreshaj IA, Wilson CG, Martin RJ, Zaidi SI, Haxhiu MA (2005) An astrocyte toxin influences the pattern of breathing and the ventilatory response to hypercapnia in neonatal rats. Respir Physiol Neurobiol 147(1):19–30PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Fernando Peña-Ortega
    • 1
    Email author
  • Ana Julia Rivera-Angulo
    • 1
  • Jonathan Julio Lorea-Hernández
    • 1
  1. 1.Departamento de Neurobiología del Desarrollo y NeurofisiologíaInstituto de Neurobiología, Universidad Nacional Autónoma de MéxicoQuerétaroMexico

Personalised recommendations