Advertisement

NG2-glia, More Than Progenitor Cells

  • Jaime Eugenín-von BernhardiEmail author
  • Leda DimouEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 949)

Abstract

NG2-glia are a mysterious and ubiquitous glial population with a highly branched morphology. Initial studies suggested that their unique function is the generation and maintenance of oligodendrocytes in the central nervous system (CNS), important for proper myelination and therefore for axonal support and fast conduction velocity. Over the last years this simplistic notion has been dramatically changed: the wide and homogeneous distribution of NG2-glia within all areas of the developing CNS that is maintained during the whole lifespan, their potential to also differentiate into other cell types in a spatiotemporal manner, their active capability of maintaining their population and their dynamic behavior in altered conditions have raised the question: are NG2-glia simple progenitor cells or do they play further major roles in the normal function of the CNS? In this chapter, we will discuss some important features of NG2-glia like their homeostatic distribution in the CNS and their potential to differentiate into diverse cell types. Additionally, we will give some further insights into the properties that these cells have, like the ability to form synapses with neurons and their plastic behavior triggered by neuronal activity, suggesting that they may play a role specifically in myelin and more generally in brain plasticity. Finally, we will briefly review their behavior in disease models suggesting that their function is extended to repair the brain after insult.

Keywords

NG2-glia Myelination Oligodendrocytes Neuronal activity NG2-glia neuronal synapse Disease Injury Proliferation Differentiation Plasticity 

Abbreviations

Amyloid protein β

AD

Alzheimer’s disease

AMPA

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

AMPAR

AMPA receptor

Ascl1

Achaete-scute homolog 1

αScTX

Α-scorpion toxin

BrdU

5-bromo-2′-deoxyuridine

Cavs

Voltage-gated calcium channels

CC1

Adenomatous polyposis coli

CNS

Central nervous system

DNQX

6,7-dinitroquinoxaline-2,3-dione

EAE

Experimental autoimmune encephalomyelitis

EdU

5-ethynyl-2′-deoxyuridine

EPSC

Excitatory postsynaptic current

GABAAR

γ-aminobutyric acid receptor

GPR17

G-protein coupled receptor 17

Kvs

Voltage-gated potassium channels

LPC

α-lysophosphatidylcholine

Mash1

Mammalian achaete-scute homolog 1

MBP

Myelin basic protein

MCAO

Middle cerebral artery occlusion

mEPSC

Miniature EPSC

MS

Multiple sclerosis

Navs

Voltage-gated sodium channels

NBQX

2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(F)quinoxaline

NG2

Neuron/glia antigen 2

NMDAR

N-methyl-d-aspartate receptor

OPCs

Oligodendrocyte progenitor cells

PDGF

Platelet-derived growth factor

PDGFR

PDGF receptor α

PFC

Prefrontral cortex

PLP

Proteolipid protein

PNS

Peripheral nervous system

PSD-95

Postsynaptic density protein 95

TeNT

Tetanus neurotoxin

TTX

Tetrodotoxin

References

  1. Barres BA, Raff MC (1993) Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons. Nature 361(6409):258–260. doi: 10.1038/361258a0 CrossRefPubMedGoogle Scholar
  2. Behrendt G, Baer K, Buffo A, Curtis MA, Faull RL, Rees MI, Gotz M, Dimou L (2013) Dynamic changes in myelin aberrations and oligodendrocyte generation in chronic amyloidosis in mice and men. Glia 61(2):273–286. doi: 10.1002/glia.22432 CrossRefPubMedGoogle Scholar
  3. Bengtsson SL, Nagy Z, Skare S, Forsman L, Forssberg H, Ullen F (2005) Extensive piano practicing has regionally specific effects on white matter development. Nat Neurosci 8(9):1148–1150. doi: 10.1038/nn1516 CrossRefPubMedGoogle Scholar
  4. Bergles DE, Roberts JD, Somogyi P, Jahr CE (2000) Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405(6783):187–191. doi: 10.1038/35012083 CrossRefPubMedGoogle Scholar
  5. Birey F, Aguirre A (2015) Age-dependent Netrin-1 signaling regulates NG2+ glial cell spatial homeostasis in normal adult gray matter. J Neurosci 35(17):6946–6951. doi: 10.1523/JNEUROSCI.0356-15.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Boda E, Vigano F, Rosa P, Fumagalli M, Labat-Gest V, Tempia F, Abbracchio MP, Dimou L, Buffo A (2011) The GPR17 receptor in NG2 expressing cells: focus on in vivo cell maturation and participation in acute trauma and chronic damage. Glia 59(12):1958–1973. doi: 10.1002/glia.21237 CrossRefPubMedGoogle Scholar
  7. Bu J, Banki A, Wu Q, Nishiyama A (2004) Increased NG2(+) glial cell proliferation and oligodendrocyte generation in the hypomyelinating mutant shiverer. Glia 48(1):51–63. doi: 10.1002/glia.20055 CrossRefPubMedGoogle Scholar
  8. Chen Y, Wu H, Wang S, Koito H, Li J, Ye F, Hoang J, Escobar SS, Gow A, Arnett HA, Trapp BD, Karandikar NJ, Hsieh J, Lu QR (2009) The oligodendrocyte-specific G protein-coupled receptor GPR17 is a cell-intrinsic timer of myelination. Nat Neurosci 12(11):1398–1406. doi: 10.1038/nn.2410 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Clarke LE, Young KM, Hamilton NB, Li H, Richardson WD, Attwell D (2012) Properties and fate of oligodendrocyte progenitor cells in the corpus callosum, motor cortex, and piriform cortex of the mouse. J Neurosci 32(24):8173–8185. doi: 10.1523/JNEUROSCI.0928-12.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Davis AD, Weatherby TM, Hartline DK, Lenz PH (1999) Myelin-like sheaths in copepod axons. Nature 398(6728):571. doi: 10.1038/19212 CrossRefPubMedGoogle Scholar
  11. Dawson MR, Polito A, Levine JM, Reynolds R (2003) NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol Cell Neurosci 24(2):476–488CrossRefPubMedGoogle Scholar
  12. De Angelis F, Bernardo A, Magnaghi V, Minghetti L, Tata AM (2012) Muscarinic receptor subtypes as potential targets to modulate oligodendrocyte progenitor survival, proliferation, and differentiation. Dev Neurobiol 72(5):713–728. doi: 10.1002/dneu.20976 CrossRefPubMedGoogle Scholar
  13. De Biase LM, Nishiyama A, Bergles DE (2010) Excitability and synaptic communication within the oligodendrocyte lineage. J Neurosci 30(10):3600–3611. doi: 10.1523/JNEUROSCI.6000-09.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Demerens C, Stankoff B, Logak M, Anglade P, Allinquant B, Couraud F, Zalc B, Lubetzki C (1996) Induction of myelination in the central nervous system by electrical activity. Proc Natl Acad Sci USA 93(18):9887–9892CrossRefPubMedPubMedCentralGoogle Scholar
  15. Di Bello IC, Dawson MR, Levine JM, Reynolds R (1999) Generation of oligodendroglial progenitors in acute inflammatory demyelinating lesions of the rat brain stem is associated with demyelination rather than inflammation. J Neurocytol 28(4–5):365–381CrossRefPubMedGoogle Scholar
  16. Dimou L, Gallo V (2015) NG2-glia and their functions in the central nervous system. Glia 63(8):1429–1451. doi: 10.1002/glia.22859 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dimou L, Götz M (2014) Glial cells as progenitors and stem cells: new roles in the healthy and diseased brain. Physiol Rev 94(3):709–737. doi: 10.1152/physrev.00036.2013 CrossRefPubMedGoogle Scholar
  18. Dimou L, Simon C, Kirchhoff F, Takebayashi H, Gotz M (2008) Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J Neurosci 28(41):10434–10442. doi: 10.1523/JNEUROSCI.2831-08.2008 CrossRefPubMedGoogle Scholar
  19. Dzamba D, Honsa P, Anderova M (2013) NMDA receptors in glial cells: pending questions. Curr Neuropharmacol 11(3):250–262. doi: 10.2174/1570159X11311030002 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ehninger D, Wang LP, Klempin F, Romer B, Kettenmann H, Kempermann G (2011) Enriched environment and physical activity reduce microglia and influence the fate of NG2 cells in the amygdala of adult mice. Cell Tissue Res 345(1):69–86. doi: 10.1007/s00441-011-1200-z CrossRefPubMedPubMedCentralGoogle Scholar
  21. El-Husseini AE, Schnell E, Chetkovich DM, Nicoll RA, Bredt DS (2000) PSD-95 involvement in maturation of excitatory synapses. Science 290(5495):1364–1368PubMedGoogle Scholar
  22. Franklin RJ, Ffrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 9(11):839–855. doi: 10.1038/nrn2480 CrossRefPubMedGoogle Scholar
  23. Garay L, Tungler V, Deniselle MC, Lima A, Roig P, De Nicola AF (2011) Progesterone attenuates demyelination and microglial reaction in the lysolecithin-injured spinal cord. Neuroscience 192:588–597. doi: 10.1016/j.neuroscience.2011.06.065 CrossRefPubMedGoogle Scholar
  24. Gary DS, Malone M, Capestany P, Houdayer T, McDonald JW (2012) Electrical stimulation promotes the survival of oligodendrocytes in mixed cortical cultures. J Neurosci Res 90(1):72–83. doi: 10.1002/jnr.22717 CrossRefPubMedGoogle Scholar
  25. Gensert JM, Goldman JE (1997) Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron 19(1):197–203CrossRefPubMedGoogle Scholar
  26. Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL, Wood LS, Inema I, Miller SE, Bieri G, Zuchero JB, Barres BA, Woo PJ, Vogel H, Monje M (2014) Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344(6183):1252304. doi: 10.1126/science.1252304 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Guo F, Maeda Y, Ma J, Xu J, Horiuchi M, Miers L, Vaccarino F, Pleasure D (2010) Pyramidal neurons are generated from oligodendroglial progenitor cells in adult piriform cortex. J Neurosci 30(36):12036–12049. doi: 10.1523/JNEUROSCI.1360-10.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hill RA, Patel KD, Medved J, Reiss AM, Nishiyama A (2013) NG2 cells in white matter but not gray matter proliferate in response to PDGF. J Neurosci 33(36):14558–14566. doi: 10.1523/JNEUROSCI.2001-12.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hill RA, Patel KD, Goncalves CM, Grutzendler J, Nishiyama A (2014) Modulation of oligodendrocyte generation during a critical temporal window after NG2 cell division. Nat Neurosci 17(11):1518–1527. doi: 10.1038/nn.3815 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hines JH, Ravanelli AM, Schwindt R, Scott EK, Appel B (2015) Neuronal activity biases axon selection for myelination in vivo. Nat Neurosci 18(5):683–689. doi: 10.1038/nn.3992 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hughes EG, Kang SH, Fukaya M, Bergles DE (2013) Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat Neurosci 16(6):668–676. doi: 10.1038/nn.3390 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kang SH, Fukaya M, Yang JK, Rothstein JD, Bergles DE (2010) NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron 68(4):668–681. doi: 10.1016/j.neuron.2010.09.009 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Karadottir R, Hamilton NB, Bakiri Y, Attwell D (2008) Spiking and nonspiking classes of oligodendrocyte precursor glia in CNS white matter. Nat Neurosci 11(4):450–456. doi: 10.1038/nn2060 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Keirstead HS, Levine JM, Blakemore WF (1998) Response of the oligodendrocyte progenitor cell population (defined by NG2 labelling) to demyelination of the adult spinal cord. Glia 22(2):161–170CrossRefPubMedGoogle Scholar
  35. Kirby BB, Takada N, Latimer AJ, Shin J, Carney TJ, Kelsh RN, Appel B (2006) In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development. Nat Neurosci 9(12):1506–1511. doi: 10.1038/nn1803 CrossRefPubMedGoogle Scholar
  36. Lasiene J, Matsui A, Sawa Y, Wong F, Horner PJ (2009) Age-related myelin dynamics revealed by increased oligodendrogenesis and short internodes. Aging Cell 8(2):201–213. doi: 10.1111/j.1474-9726.2009.00462.x CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lecca D, Trincavelli ML, Gelosa P, Sironi L, Ciana P, Fumagalli M, Villa G, Verderio C, Grumelli C, Guerrini U, Tremoli E, Rosa P, Cuboni S, Martini C, Buffo A, Cimino M, Abbracchio MP (2008) The recently identified P2Y-like receptor GPR17 is a sensor of brain damage and a new target for brain repair. PLoS ONE 3(10):e3579. doi: 10.1371/journal.pone.0003579 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Li Q, Brus-Ramer M, Martin JH, McDonald JW (2010) Electrical stimulation of the medullary pyramid promotes proliferation and differentiation of oligodendrocyte progenitor cells in the corticospinal tract of the adult rat. Neurosci Lett 479(2):128–133. doi: 10.1016/j.neulet.2010.05.043 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Li W, Tang Y, Fan Z, Meng Y, Yang G, Luo J, Ke ZJ (2013) Autophagy is involved in oligodendroglial precursor-mediated clearance of amyloid peptide. Mol Neurodegener 8:27. doi: 10.1186/1750-1326-8-27 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Liu J, Dietz K, DeLoyht JM, Pedre X, Kelkar D, Kaur J, Vialou V, Lobo MK, Dietz DM, Nestler EJ, Dupree J, Casaccia P (2012) Impaired adult myelination in the prefrontal cortex of socially isolated mice. Nat Neurosci 15(12):1621–1623. doi: 10.1038/nn.3263 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lu PH, Lee GJ, Raven EP, Tingus K, Khoo T, Thompson PM, Bartzokis G (2011) Age-related slowing in cognitive processing speed is associated with myelin integrity in a very healthy elderly sample. J Clin Exp Neuropsychol 33(10):1059–1068. doi: 10.1080/13803395.2011.595397 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lu PH, Lee GJ, Tishler TA, Meghpara M, Thompson PM, Bartzokis G (2013) Myelin breakdown mediates age-related slowing in cognitive processing speed in healthy elderly men. Brain Cogn 81(1):131–138. doi: 10.1016/j.bandc.2012.09.006 CrossRefPubMedGoogle Scholar
  43. Lundgaard I, Luzhynskaya A, Stockley JH, Wang Z, Evans KA, Swire M, Volbracht K, Gautier HO, Franklin RJ, Charles F-C, Attwell D, Karadottir RT (2013) Neuregulin and BDNF induce a switch to NMDA receptor-dependent myelination by oligodendrocytes. PLoS Biol 11(12):e1001743. doi: 10.1371/journal.pbio.1001743 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Mangin JM, Li P, Scafidi J, Gallo V (2012) Experience-dependent regulation of NG2 progenitors in the developing barrel cortex. Nat Neurosci 15(9):1192–1194. doi: 10.1038/nn.3190 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Marrs GS, Green SH, Dailey ME (2001) Rapid formation and remodeling of postsynaptic densities in developing dendrites. Nat Neurosci 4(10):1006–1013. doi: 10.1038/nn717 CrossRefPubMedGoogle Scholar
  46. Mensch S, Baraban M, Almeida R, Czopka T, Ausborn J, El Manira A, Lyons DA (2015) Synaptic vesicle release regulates myelin sheath number of individual oligodendrocytes in vivo. Nat Neurosci 18(5):628–630. doi: 10.1038/nn.3991 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Miller RH (1996) Oligodendrocyte origins. Trends Neurosci 19(3):92–96CrossRefPubMedGoogle Scholar
  48. Nave KA, Werner HB (2014) Myelination of the nervous system: mechanisms and functions. Annu Rev Cell Dev Biol 30:503–533. doi: 10.1146/annurev-cellbio-100913-013101 CrossRefPubMedGoogle Scholar
  49. Ozerdem U, Grako KA, Dahlin-Huppe K, Monosov E, Stallcup WB (2001) NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev Dyn 222(2):218–227. doi: 10.1002/dvdy.1200 CrossRefPubMedGoogle Scholar
  50. Parras CM, Hunt C, Sugimori M, Nakafuku M, Rowitch D, Guillemot F (2007) The proneural gene Mash1 specifies an early population of telencephalic oligodendrocytes. J Neurosci 27(16):4233–4242. doi: 10.1523/JNEUROSCI.0126-07.2007 CrossRefPubMedGoogle Scholar
  51. Peters A (2002) The effects of normal aging on myelin and nerve fibers: a review. J Neurocytol 31(8–9):581–593CrossRefPubMedGoogle Scholar
  52. Psachoulia K, Jamen F, Young KM, Richardson WD (2009) Cell cycle dynamics of NG2 cells in the postnatal and ageing brain. Neuron Glia Biol 5(3–4):57–67. doi: 10.1017/S1740925X09990354 CrossRefPubMedGoogle Scholar
  53. Raff MC, Miller RH, Noble M (1983) A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 303(5916):390–396CrossRefPubMedGoogle Scholar
  54. Robins SC, Trudel E, Rotondi O, Liu X, Djogo T, Kryzskaya D, Bourque CW, Kokoeva MV (2013) Evidence for NG2-glia derived, adult-born functional neurons in the hypothalamus. PLoS ONE 8(10):e78236. doi: 10.1371/journal.pone.0078236 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Sakry D, Karram K, Trotter J (2011) Synapses between NG2 glia and neurons. J Anat 219(1):2–7. doi: 10.1111/j.1469-7580.2011.01359.x CrossRefPubMedPubMedCentralGoogle Scholar
  56. Scholz J, Klein MC, Behrens TE, Johansen-Berg H (2009) Training induces changes in white-matter architecture. Nat Neurosci 12(11):1370–1371. doi: 10.1038/nn.2412 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Simon C, Gotz M, Dimou L (2011) Progenitors in the adult cerebral cortex: cell cycle properties and regulation by physiological stimuli and injury. Glia 59(6):869–881. doi: 10.1002/glia.21156 CrossRefPubMedGoogle Scholar
  58. Sirko S, Behrendt G, Johansson PA, Tripathi P, Costa M, Bek S, Heinrich C, Tiedt S, Colak D, Dichgans M, Fischer IR, Plesnila N, Staufenbiel M, Haass C, Snapyan M, Saghatelyan A, Tsai LH, Fischer A, Grobe K, Dimou L, Gotz M (2013) Reactive glia in the injured brain acquire stem cell properties in response to sonic hedgehog [corrected]. Cell Stem Cell 12(4):426–439. doi: 10.1016/j.stem.2013.01.019 CrossRefPubMedGoogle Scholar
  59. Stevens B, Porta S, Haak LL, Gallo V, Fields RD (2002) Adenosine: a neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron 36(5):855–868CrossRefPubMedPubMedCentralGoogle Scholar
  60. Sturrock RR (1976) Changes in neurologia and myelination in the white matter of aging mice. J Gerontol 31(5):513–522CrossRefPubMedGoogle Scholar
  61. Verkhratsky A, Steinhauser C (2000) Ion channels in glial cells. Brain Res Brain Res Rev 32(2–3):380–412CrossRefPubMedGoogle Scholar
  62. Vigano F, Dimou L (2016) The heterogeneous nature of NG2-glia. Brain Res. doi: 10.1016/j.brainres.2015.09.012 PubMedGoogle Scholar
  63. Vigano F, Mobius W, Gotz M, Dimou L (2013) Transplantation reveals regional differences in oligodendrocyte differentiation in the adult brain. Nat Neurosci 16(10):1370–1372. doi: 10.1038/nn.3503 CrossRefPubMedGoogle Scholar
  64. Vigano F, Schneider S, Cimino M, Bonfanti E, Gelosa P, Sironi L, Abbracchio MP, Dimou L (2016) GPR17 expressing NG2-Glia: Oligodendrocyte progenitors serving as a reserve pool after injury. Glia 64(2):287–299. doi: 10.1002/glia.22929 CrossRefPubMedGoogle Scholar
  65. Von Blankenfeld G, Trotter J, Kettenmann H (1991) Expression and developmental regulation of a GABAA receptor in cultured murine cells of the oligodendrocyte lineage. Eur J Neurosci 3(4):310–316CrossRefGoogle Scholar
  66. Williamson AV, Mellor JR, Grant AL, Randall AD (1998) Properties of GABA(A) receptors in cultured rat oligodendrocyte progenitor cells. Neuropharmacology 37(7):859–873CrossRefPubMedGoogle Scholar
  67. Wilson HC, Scolding NJ, Raine CS (2006) Co-expression of PDGF alpha receptor and NG2 by oligodendrocyte precursors in human CNS and multiple sclerosis lesions. J Neuroimmunol 176(1–2):162–173. doi: 10.1016/j.jneuroim.2006.04.014 CrossRefPubMedGoogle Scholar
  68. Windrem MS, Schanz SJ, Guo M, Tian GF, Washco V, Stanwood N, Rasband M, Roy NS, Nedergaard M, Havton LA, Wang S, Goldman SA (2008) Neonatal chimerization with human glial progenitor cells can both remyelinate and rescue the otherwise lethally hypomyelinated shiverer mouse. Cell Stem Cell 2(6):553–565. doi: 10.1016/j.stem.2008.03.020 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Wu Q, Miller RH, Ransohoff RM, Robinson S, Bu J, Nishiyama A (2000) Elevated levels of the chemokine GRO-1 correlate with elevated oligodendrocyte progenitor proliferation in the jimpy mutant. J Neurosci 20(7):2609–2617PubMedGoogle Scholar
  70. Yuan X, Eisen AM, McBain CJ, Gallo V (1998) A role for glutamate and its receptors in the regulation of oligodendrocyte development in cerebellar tissue slices. Development 125(15):2901–2914PubMedGoogle Scholar
  71. Zhu X, Bergles DE, Nishiyama A (2008) NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development 135(1):145–157. doi: 10.1242/dev.004895 CrossRefPubMedGoogle Scholar
  72. Zhu X, Hill RA, Dietrich D, Komitova M, Suzuki R, Nishiyama A (2011) Age-dependent fate and lineage restriction of single NG2 cells. Development 138(4):745–753. doi: 10.1242/dev.047951 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Ziskin JL, Nishiyama A, Rubio M, Fukaya M, Bergles DE (2007) Vesicular release of glutamate from unmyelinated axons in white matter. Nat Neurosci 10(3):321–330. doi: 10.1038/nn1854 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Physiological Genomics, Biomedical CenterLudwig-Maximilians-UniversityPlanegg-MartinsriedGermany
  2. 2.Graduate School of Systemic NeuroscienceLudwig-Maximilians-UniversityPlanegg-MartinsriedGermany

Personalised recommendations