Advertisement

Regulation of Oligodendrocyte Differentiation and Myelination by Nuclear Receptors: Role in Neurodegenerative Disorders

  • Adrián Sandoval-Hernández
  • María José Contreras
  • Jenny Jaramillo
  • Gonzalo ArboledaEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 949)

Abstract

During development and through adulthood, differentiation of diverse cell types is controlled by specific genetic and molecular programs for which transcription factors are master regulators of gene expression. Here, we present an overview of the role of nuclear receptors and their selective pharmacological modulators in oligodendrocytes linage, their role in myelination and remyelination and their potential use as a therapeutic strategy for demyelinating diseases. We discuss several aspects of nuclear receptors including: (1) the biochemistry of nuclear receptors superfamily; (2) their role on stem cells physiology, focusing in differentiation and cell removal; (3) the role of nuclear receptor in the oligodendrocytes cell linage, from oligodendrocyte progenitors cells to mature myelinating cells; and (4) the therapeutics opportunities of nuclear receptors for specific demyelinating diseases.

Keywords

Nuclear receptors Oligodendrocytes Demyelinating diseases Alzheimer’s disease 

Abbreviations

Amyloid-β

AD

Alzheimer’s disease

ALDRP

Adrenoleukodystrophy-related protein

AMN

Adrenomyeloneuropathy

aNSCs

Adult neural stem cells

AR

Androgen receptor

CAR

Constitutive androstane receptor

CBP

cAMP response element binding protein-binding protein

CNPase

2′3′-cyclic nucleotide 3′-phosphodiesterase

CNTF

Ciliary neurotrophic factor

COUP-TF

Chicken ovalbumin upstream promoter-transcription factor

CNS

Central nervous system

DBD

DNA binding domain

DG

Dendate gyrus

EAE

Experimental autoimmune encephalomyelitis

ER

Estrogen receptor

ERR

Estrogen-related receptor

FXR

Farnesoid X receptor

GFAP

Glial fibrillary acid protein

GR

Glucocorticoid receptor

HNF4A

Hepatocyte nuclear factor 4A

IGF-1

Insulin-like growth factor-1

LBD

Ligand binding domain

LRH-1

Human liver receptor homologue-1

LXR

Liver X receptor

MBP

Myelin basic protein

MCP-1

Monocyte chemoattractant protein 1

MR

Mineralocorticoid receptor

MPZ

Myelin protein zero

MS

Multiple sclerosis

N-CoR

Nuclear receptor corepressor

NR2E1

Orphan nuclear receptor subfamily 2 group E member 1 NPCs neural progenitor cells

NRs

Nuclear receptors

NSCs

Neural stem cells

Nurr1

Nuclear receptor related 1 protein

OL

Oligodendrocytes

OPCs

Oligodendrocytes progenitor cells

PDGF

Platelet-derived growth factor

PGC-1

Peroxisome proliferator-activated receptor-gamma coactivators 1

PGJ2

Prostaglandin J2

PLP

Myelin proteolipid protein

PPAR

Peroxisome proliferator-activated receptor

PMP22

Peripheral myelin protein 22

PPREs

Peroxisome proliferator response elements

PR

Progesterone receptor

PXR

Pregnane X receptor

KD

Krabbe disease

RA

Retinoic acid

RAR

Retinoic acid receptor

RE

Response element

ROR

Retinoid-related orphan receptor

RXR

Retinoid X receptor

SF-1

Steroidogenic factor-1

SMRT

Silencing mediator of retinoid and thyroid hormone receptorsT3 triiodothyronine

TH

Thyroid hormone

TLX

A homolog of Drosophila tailless gene

TR

Thyroid hormone receptor

TNFα

Tumor necrosis factor alpha

X-ALD

X-linked adrenoleukodystrophy

X-CALD

X-linked cerebral adrenoleukodystrophy

VEGF

Vascular endothelial growth factor

VDR

Vitamin D receptor

Notes

Acknowledgments

This work was supported by grants from COLCIENCIAS (110145221189), DIB-Universidad Nacional de Colombia (20101007590, 20201009689) and the Facultad de Medicina, Universidad Nacional de Colombia.

References

  1. Ahlgren SC, Wallace H, Bishop J, Neophytou C, Raff MC (1997) Effects of thyroid hormone on embryonic oligodendrocyte precursor cell development in vivo and in vitro. Mol Cell Neurosci 9(5–6):420–432PubMedCrossRefGoogle Scholar
  2. Alaynick WA (2008) Nuclear receptors, mitochondria and lipid metabolism. Mitochondrion 8(4):329–337PubMedPubMedCentralCrossRefGoogle Scholar
  3. Auboeuf D, Rieusset J, Fajas L, Vallier P, Frering V, Riou JP, Staels B, Auwerx J, Laville M, Vidal H (1997) Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-alpha in humans: no alteration in adipose tissue of obese and NIDDM patients. Diabetes 46(8):1319–1327PubMedCrossRefGoogle Scholar
  4. Barbier O, Torra IP, Duguay Y, Blanquart C, Fruchart JC, Glineur C, Staels B (2002) Pleiotropic actions of peroxisome proliferator-activated receptors in lipid metabolism and atherosclerosis. Arterioscler Thromb Vasc Biol 22(5):717–726PubMedCrossRefGoogle Scholar
  5. Bensinger SJ, Tontonoz P (2008) Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature 454(7203):470–477. doi: 10.1038/nature07202 nature07202 [pii]
  6. Bernardo A, Bianchi D, Magnaghi V, Minghetti L (2009) Peroxisome proliferator-activated receptor-gamma agonists promote differentiation and antioxidant defenses of oligodendrocyte progenitor cells. J Neuropathol Exp Neurol 68(7):797–808PubMedCrossRefGoogle Scholar
  7. Burris TP, Solt LA, Wang Y, Crumbley C, Banerjee S, Griffett K, Lundasen T, Hughes T, Kojetin DJ (2013) Nuclear receptors and their selective pharmacologic modulators. Pharmacol Rev 65(2):710–778. doi: 10.1124/pr.112.006833 65/2/710 [pii]
  8. Calkin AC, Tontonoz P (2012) Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat Rev Mol Cell Biol 13(4):213–224PubMedPubMedCentralGoogle Scholar
  9. Camacho A, Huang JK, int-Ramirez I, Yew TC, Fuller M, Lelliott CJ, Vidal-Puig A, Franklin RJ (2013) Peroxisome proliferator-activated receptor gamma-coactivator-1 alpha coordinates sphingolipid metabolism, lipid raft composition and myelin protein synthesis. Eur J Neurosci 38(5):2672–2683Google Scholar
  10. Chambon P (2005) The nuclear receptor superfamily: a personal retrospect on the first two decades. Mol Endocrinol 19(6):1418–1428. doi: 10.1210/me.2005-0125 PubMedCrossRefGoogle Scholar
  11. Chen T (2008) Nuclear receptor drug discovery. Curr Opin Chem Biol 12(4):418–426. doi: 10.1016/j.cbpa.2008.07.001 PubMedCrossRefGoogle Scholar
  12. Chong SY, Chan JR (2010) Tapping into the glial reservoir: cells committed to remaining uncommitted. J Cell Biol 188(3):305–312PubMedPubMedCentralCrossRefGoogle Scholar
  13. Crawford AH, Stockley JH, Tripathi RB, Richardson WD, Franklin RJ (2014) Oligodendrocyte progenitors: adult stem cells of the central nervous system? Exp Neurol 260:50–55PubMedCrossRefGoogle Scholar
  14. De NC, Bernardo A, De SR, Mancuso E, Magnaghi V, Visentin S, Minghetti L (2011) Peroxisome proliferator-activated receptor gamma agonists accelerate oligodendrocyte maturation and influence mitochondrial functions and oscillatory Ca(2+) waves. J Neuropathol Exp Neurol 70(10):900–912CrossRefGoogle Scholar
  15. Defaux A, Zurich MG, Braissant O, Honegger P, Monnet-Tschudi F (2009) Effects of the PPAR-beta agonist GW501516 in an in vitro model of brain inflammation and antibody-induced demyelination. J Neuroinflammation 6:15PubMedPubMedCentralCrossRefGoogle Scholar
  16. Desai MK, Mastrangelo MA, Ryan DA, Sudol KL, Narrow WC, Bowers WJ (2010) Early oligodendrocyte/myelin pathology in alzheimer’s disease mice constitutes a novel therapeutic target. Am J Pathol 177(3):1422–1435. doi: 10.2353/ajpath.2010.100087 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Dhib-Jalbut S (2007) Pathogenesis of myelin/oligodendrocyte damage in multiple sclerosis. Neurology 68(22 Suppl 3):S13–S21PubMedCrossRefGoogle Scholar
  18. Diab A, Deng C, Smith JD, Hussain RZ, Phanavanh B, Lovett-Racke AE, Drew PD, Racke MK (2002) Peroxisome proliferator-activated receptor-gamma agonist 15-deoxy-Delta(12,14)-prostaglandin J(2) ameliorates experimental autoimmune encephalomyelitis. J Immunol 168(5):2508–2515PubMedCrossRefGoogle Scholar
  19. Diab A, Hussain RZ, Lovett-Racke AE, Chavis JA, Drew PD, Racke MK (2004) Ligands for the peroxisome proliferator-activated receptor-gamma and the retinoid X receptor exert additive anti-inflammatory effects on experimental autoimmune encephalomyelitis. J Neuroimmunol 148(1–2):116–126PubMedCrossRefGoogle Scholar
  20. Donkin JJ, Stukas S, Hirsch-Reinshagen V, Namjoshi D, Wilkinson A, May S, Chan J, Fan J, Collins J, Wellington CL (2010) ATP-binding cassette transporter A1 mediates the beneficial effects of the liver X receptor agonist GW3965 on object recognition memory and amyloid burden in amyloid precursor protein/presenilin 1 mice. J Biol Chem 285(44):34144–34154PubMedPubMedCentralCrossRefGoogle Scholar
  21. Drew PD, Xu J, Racke MK (2008) PPAR-gamma: therapeutic potential for multiple sclerosis. PPAR Res 2008:627463PubMedPubMedCentralCrossRefGoogle Scholar
  22. Dubois-Dalcq M, Williams A, Stadelmann C, Stankoff B, Zalc B, Lubetzki C (2008) From fish to man: understanding endogenous remyelination in central nervous system demyelinating diseases. Brain 131(Pt 7):1686–1700PubMedPubMedCentralCrossRefGoogle Scholar
  23. Emery B (2010) Regulation of oligodendrocyte differentiation and myelination. Science 330(6005):779–782PubMedCrossRefGoogle Scholar
  24. Escribano L, Simon AM, Gimeno E, Cuadrado-Tejedor M, de Lopez MR, Garcia-Osta A, Ricobaraza A, Perez-Mediavilla A, Del RJ, Frechilla D (2010) Rosiglitazone rescues memory impairment in Alzheimer’s transgenic mice: mechanisms involving a reduced amyloid and tau pathology. Neuropsychopharmacology 35(7):1593–1604PubMedPubMedCentralCrossRefGoogle Scholar
  25. Etgen GJ, Mantlo N (2003) PPAR ligands for metabolic disorders. Curr Top Med Chem 3(14):1649–1661PubMedCrossRefGoogle Scholar
  26. Fajas L, Debril MB, Auwerx J (2001) PPAR gamma: an essential role in metabolic control. Nutr Metab Cardiovasc Dis 11(1):64–69PubMedGoogle Scholar
  27. Fan X, Kim HJ, Bouton D, Warner M, Gustafsson JA (2008) Expression of liver X receptor beta is essential for formation of superficial cortical layers and migration of later-born neurons. Proc Natl Acad Sci USA 105(36):13445–13450PubMedPubMedCentralCrossRefGoogle Scholar
  28. Fancy SP, Baranzini SE, Zhao C, Yuk DI, Irvine KA, Kaing S, Sanai N, Franklin RJ, Rowitch DH (2009) Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev 23(13):1571–1585PubMedPubMedCentralCrossRefGoogle Scholar
  29. Feinstein DL, Galea E, Gavrilyuk V, Brosnan CF, Whitacre CC, Dumitrescu-Ozimek L, Landreth GE, Pershadsingh HA, Weinberg G, Heneka MT (2002) Peroxisome proliferator-activated receptor-gamma agonists prevent experimental autoimmune encephalomyelitis. Ann Neurol 51(6):694–702PubMedCrossRefGoogle Scholar
  30. Fernandez M, Pirondi S, Manservigi M, Giardino L, Calza L (2004) Thyroid hormone participates in the regulation of neural stem cells and oligodendrocyte precursor cells in the central nervous system of adult rat. Eur J Neurosci 20(8):2059–2070PubMedCrossRefGoogle Scholar
  31. Ferrer I, Aubourg P, Pujol A (2010) General aspects and neuropathology of X-linked adrenoleukodystrophy. Brain Pathol 20(4):817–830PubMedCrossRefGoogle Scholar
  32. Franklin RJ, Ffrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 9(11):839–855PubMedCrossRefGoogle Scholar
  33. Gallo V, Chew LJ (2011) An RXR-gamma Rx for white-matter damage. Nat Neurosci 14(1):3–5PubMedCrossRefGoogle Scholar
  34. Germain P, Staels B, Dacquet C, Spedding M, Laudet V (2006) Overview of nomenclature of nuclear receptors. Pharmacol Rev 58(4):685–704. doi: 10.1124/pr.58.4.2 PubMedCrossRefGoogle Scholar
  35. Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL, Wood LS, Inema I, Miller SE, Bieri G, Zuchero JB, Barres BA, Woo PJ, Vogel H, Monje M (2014) Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344(6183):1252304PubMedPubMedCentralCrossRefGoogle Scholar
  36. Gocke AR, Hussain RZ, Yang Y, Peng H, Weiner J, Ben LH, Drew PD, Stuve O, Lovett-Racke AE, Racke MK (2009) Transcriptional modulation of the immune response by peroxisome proliferator-activated receptor-{alpha} agonists in autoimmune disease. J Immunol 182(7):4479–4487PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gofflot F, Chartoire N, Vasseur L, Heikkinen S, Dembele D, Le MJ, Auwerx J (2007) Systematic gene expression mapping clusters nuclear receptors according to their function in the brain. Cell 131(2):405–418PubMedCrossRefGoogle Scholar
  38. Goncalves MB, Boyle J, Webber DJ, Hall S, Minger SL, Corcoran JP (2005) Timing of the retinoid-signalling pathway determines the expression of neuronal markers in neural progenitor cells. Dev Biol 278(1):60–70PubMedCrossRefGoogle Scholar
  39. Goncalves MB, Agudo M, Connor S, McMahon S, Minger SL, Maden M, Corcoran JP (2009) Sequential RARbeta and alpha signalling in vivo can induce adult forebrain neural progenitor cells to differentiate into neurons through Shh and FGF signalling pathways. Dev Biol 326(2):305–313PubMedCrossRefGoogle Scholar
  40. Gu P, Goodwin B, Chung AC, Xu X, Wheeler DA, Price RR, Galardi C, Peng L, Latour AM, Koller BH, Gossen J, Kliewer SA, Cooney AJ (2005) Orphan nuclear receptor LRH-1 is required to maintain Oct4 expression at the epiblast stage of embryonic development. Mol Cell Biol 25(9):3492–3505PubMedPubMedCentralCrossRefGoogle Scholar
  41. Haan MN (2006) Therapy Insight: type 2 diabetes mellitus and the risk of late-onset Alzheimer’s disease. Nat Clin Pract Neurol 2(3):159–166PubMedCrossRefGoogle Scholar
  42. Hafler DA, Slavik JM, Anderson DE, O’Connor KC, De JP, Baecher-Allan C (2005) Multiple sclerosis. Immunol Rev 204:208–231PubMedCrossRefGoogle Scholar
  43. Haq E, Contreras MA, Giri S, Singh I, Singh AK (2006) Dysfunction of peroxisomes in twitcher mice brain: a possible mechanism of psychosine-induced disease. Biochem Biophys Res Commun 343(1):229–238PubMedCrossRefGoogle Scholar
  44. Heneka MT, Landreth GE (2007) PPARs in the brain. Biochim Biophys Acta 1771(8):1031–1045PubMedCrossRefGoogle Scholar
  45. Houck KA, Borchert KM, Hepler CD, Thomas JS, Bramlett KS, Michael LF, Burris TP (2004) T0901317 is a dual LXR/FXR agonist. Mol Genet Metab 83(1–2):184–187PubMedCrossRefGoogle Scholar
  46. Huang HJ, Schulman IG (2009) Regulation of metabolism by nuclear hormone receptors. Prog Mol Biol Transl Sci 87:1–51. doi: 10.1016/S1877-1173(09)87001-4 S1877-1173(09)87001-4 [pii]
  47. Huang JK, Jarjour AA, Oumesmar BN, Kerninon C, Williams A, Krezel W, Kagechika H, Bauer J, Zhao C, Baron-Van Evercooren A, Chambon P, Ffrench-Constant C, Franklin RJM (2011) Retinoid X receptor gamma signaling accelerates CNS remyelination. Nat Neurosci 14(1):45–53. doi: 10.1038/nn.2702 Google Scholar
  48. Ivanova N, Dobrin R, Lu R, Kotenko I, Levorse J, DeCoste C, Schafer X, Lun Y, Lemischka IR (2006) Dissecting self-renewal in stem cells with RNA interference. Nature 442(7102):533–538PubMedCrossRefGoogle Scholar
  49. Jay MA, Ren J (2007) Peroxisome proliferator-activated receptor (PPAR) in metabolic syndrome and type 2 diabetes mellitus. Curr Diabetes Rev 3(1):33–39PubMedCrossRefGoogle Scholar
  50. Jeong Y, Mangelsdorf DJ (2009) Nuclear receptor regulation of stemness and stem cell differentiation. Exp Mol Med 41(8):525–537. doi: 10.3858/emm.2009.41.8.091 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Jiang Q, Lee CY, Mandrekar S, Wilkinson B, Cramer P, Zelcer N, Mann K, Lamb B, Willson TM, Collins JL, Richardson JC, Smith JD, Comery TA, Riddell D, Holtzman DM, Tontonoz P, Landreth GE (2008) ApoE promotes the proteolytic degradation of Abeta. Neuron 58(5):681–693PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kanakasabai S, Pestereva E, Chearwae W, Gupta SK, Ansari S, Bright JJ (2012) PPARgamma agonists promote oligodendrocyte differentiation of neural stem cells by modulating stemness and differentiation genes. PLoS One 7(11):e50500PubMedPubMedCentralCrossRefGoogle Scholar
  53. Karin M (2006) Nuclear factor-[kappa]B in cancer development and progression. Nature 441(7092):431–436PubMedCrossRefGoogle Scholar
  54. Kassmann CM, Nave KA (2008) Oligodendroglial impact on axonal function and survival—a hypothesis. Curr Opin Neurol 21(3):235–241PubMedCrossRefGoogle Scholar
  55. Kemp S, Wanders R (2010) Biochemical aspects of X-linked adrenoleukodystrophy. Brain Pathol 20(4):831–837PubMedCrossRefGoogle Scholar
  56. Kessaris N, Fogarty M, Iannarelli P, Grist M, Wegner M, Richardson WD (2006) Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat Neurosci 9(2):173–179PubMedCrossRefGoogle Scholar
  57. Khan M, Haq E, Giri S, Singh I, Singh AK (2005) Peroxisomal participation in psychosine-mediated toxicity: implications for Krabbe’s disease. J Neurosci Res 80(6):845–854PubMedCrossRefGoogle Scholar
  58. Kiebish MA, Young DM, Lehman JJ, Han X (2012) Chronic caloric restriction attenuates a loss of sulfatide content in PGC-1alpha−/− mouse cortex: a potential lipidomic role of PGC-1alpha in neurodegeneration. J Lipid Res 53(2):273–281PubMedPubMedCentralCrossRefGoogle Scholar
  59. Ko GJ, Kang YS, Han SY, Lee MH, Song HK, Han KH, Kim HK, Han JY, Cha DR (2008) Pioglitazone attenuates diabetic nephropathy through an anti-inflammatory mechanism in type 2 diabetic rats. Nephrol Dial Transplant 23(9):2750–2760PubMedCrossRefGoogle Scholar
  60. Koldamova RP, Lefterov IM, Staufenbiel M, Wolfe D, Huang S, Glorioso JC, Walter M, Roth MG, Lazo JS (2005) The liver X receptor ligand T0901317 decreases amyloid beta production in vitro and in a mouse model of Alzheimer’s disease. J Biol Chem 280(6):4079–4088PubMedCrossRefGoogle Scholar
  61. Kondo T, Raff M (2000) Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289(5485):1754–1757PubMedCrossRefGoogle Scholar
  62. Konopleva M, Milella M, Ruvolo P, Watts JC, Ricciardi MR, Korchin B, McQueen T, Bornmann W, Tsao T, Bergamo P, Mak DH, Chen W, McCubrey J, Tafuri A, Andreeff M (2011) MEK inhibition enhances ABT-737-induced leukemia cell apoptosis via prevention of ERK-activated MCL-1 induction and modulation of MCL-1/BIM complex. Leukemia 26(4):778–787PubMedPubMedCentralCrossRefGoogle Scholar
  63. Kriegstein A, varez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184Google Scholar
  64. Land PW, Monaghan AP (2003) Expression of the transcription factor, tailless, is required for formation of superficial cortical layers. Cereb Cortex 13(9):921–931PubMedPubMedCentralCrossRefGoogle Scholar
  65. Landrier JF, Grober J, Demydchuk J, Besnard P (2003) FXRE can function as an LXRE in the promoter of human ileal bile acid-binding protein (I-BABP) gene. FEBS Lett 553(3):299–303PubMedCrossRefGoogle Scholar
  66. Lee J-T, Xu J, Lee J-M, Ku G, Han X, Yang D-I, Chen S, Hsu CY (2004) Amyloid-β peptide induces oligodendrocyte death by activating the neutral sphingomyelinase–ceramide pathway. J Cell Biol 164(1):123–131. doi: 10.1083/jcb.200307017 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Li W, Sun G, Yang S, Qu Q, Nakashima K, Shi Y (2008) Nuclear receptor TLX regulates cell cycle progression in neural stem cells of the developing brain. Mol Endocrinol 22(1):56–64PubMedCrossRefGoogle Scholar
  68. Lovett-Racke AE, Hussain RZ, Northrop S, Choy J, Rocchini A, Matthes L, Chavis JA, Diab A, Drew PD, Racke MK (2004) Peroxisome proliferator-activated receptor alpha agonists as therapy for autoimmune disease. J Immunol 172(9):5790–5798PubMedCrossRefGoogle Scholar
  69. Luo J, Sladek R, Bader JA, Matthyssen A, Rossant J, Giguere V (1997) Placental abnormalities in mouse embryos lacking the orphan nuclear receptor ERR-beta. Nature 388(6644):778–782PubMedCrossRefGoogle Scholar
  70. Makishima M (2003) Lipid metabolism and nuclear receptors. Seikagaku 75(5):391–395PubMedGoogle Scholar
  71. Makoukji J, Shackleford G, Meffre D, Grenier J, Liere P, Lobaccaro JM, Schumacher M, Massaad C (2011) Interplay between LXR and Wnt/beta-catenin signaling in the negative regulation of peripheral myelin genes by oxysterols. J Neurosci 31 (26):9620–9629. doi: 10.1523/JNEUROSCI.0761-11.2011 31/26/9620 [pii]
  72. Mangelsdorf DJ (2010) Commentary: the year in nuclear receptor control of metabolism. Mol Endocrinol 24(11):2075–2080. doi: 10.1210/me.2010-0357 PubMedCrossRefGoogle Scholar
  73. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM (1995) The nuclear receptor superfamily: the second decade. Cell 83(6):835–839PubMedCrossRefGoogle Scholar
  74. Mark M, Ghyselinck NB, Chambon P (2006) Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu Rev Pharmacol Toxicol 46:451–480PubMedCrossRefGoogle Scholar
  75. Martins IJ, Hone E, Foster JK, Sunram-Lea SI, Gnjec A, Fuller SJ, Nolan D, Gandy SE, Martins RN (2006) Apolipoprotein E, cholesterol metabolism, diabetes, and the convergence of risk factors for Alzheimer’s disease and cardiovascular disease. Mol Psychiatry 11(8):721–736PubMedCrossRefGoogle Scholar
  76. Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430 (7000):631–639. doi: 10.1038/nature02621 nature02621 [pii]
  77. Miller RH (2002) Regulation of oligodendrocyte development in the vertebrate CNS. Prog Neurobiol 67(6):451–467PubMedCrossRefGoogle Scholar
  78. Monaghan AP, Grau E, Bock D, Schutz G (1995) The mouse homolog of the orphan nuclear receptor tailless is expressed in the developing forebrain. Development 121(3):839–853PubMedGoogle Scholar
  79. Moser HW, Moser AE, Singh I, O’Neill BP (1984) Adrenoleukodystrophy: survey of 303 cases: biochemistry, diagnosis, and therapy. Ann Neurol 16(6):628–641PubMedCrossRefGoogle Scholar
  80. Murphy RT, Mogensen J, McGarry K, Bahl A, Evans A, Osman E, Syrris P, Gorman G, Farrell M, Holton JL, Hanna MG, Hughes S, Elliott PM, Macrae CA, McKenna WJ (2005) Adenosine monophosphate-activated protein kinase disease mimicks hypertrophic cardiomyopathy and Wolff-Parkinson-White syndrome: natural history. J Am Coll Cardiol 45(6):922–930. doi: 10.1016/j.jacc.2004.11.053 S0735-1097(04)02500-8 [pii]
  81. Naka H, Nakamura S, Shimazaki T, Okano H (2008) Requirement for COUP-TFI and II in the temporal specification of neural stem cells in CNS development. Nat Neurosci 11(9):1014–1023PubMedCrossRefGoogle Scholar
  82. Natarajan C, Bright JJ (2002) Peroxisome proliferator-activated receptor-gamma agonists inhibit experimental allergic encephalomyelitis by blocking IL-12 production, IL-12 signaling and Th1 differentiation. Genes Immun 3(2):59–70PubMedCrossRefGoogle Scholar
  83. Nelissen K, Mulder M, Smets I, Timmermans S, Smeets K, Ameloot M, Hendriks JJ (2012) Liver X receptors regulate cholesterol homeostasis in oligodendrocytes. J Neurosci Res 90(1):60–71PubMedCrossRefGoogle Scholar
  84. Niakan KK, Davis EC, Clipsham RC, Jiang M, Dehart DB, Sulik KK, McCabe ER (2006) Novel role for the orphan nuclear receptor Dax1 in embryogenesis, different from steroidogenesis. Mol Genet Metab 88(3):261–271PubMedCrossRefGoogle Scholar
  85. Niino M, Iwabuchi K, Kikuchi S, Ato M, Morohashi T, Ogata A, Tashiro K, Onoe K (2001) Amelioration of experimental autoimmune encephalomyelitis in C57BL/6 mice by an agonist of peroxisome proliferator-activated receptor-gamma. J Neuroimmunol 116(1):40–48PubMedCrossRefGoogle Scholar
  86. Nishiyama A, Komitova M, Suzuki R, Zhu X (2009) Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat Rev Neurosci 10(1):9–22PubMedCrossRefGoogle Scholar
  87. Noll E, Miller RH (1994) Regulation of oligodendrocyte differentiation: a role for retinoic acid in the spinal cord. Development 120(3):649–660PubMedGoogle Scholar
  88. Paintlia MK, Paintlia AS, Singh AK, Singh I (2011) Synergistic activity of interleukin-17 and tumor necrosis factor-alpha enhances oxidative stress-mediated oligodendrocyte apoptosis. J Neurochem 116(4):508–521PubMedPubMedCentralCrossRefGoogle Scholar
  89. Pascual G, Glass CK (2006) Nuclear receptors versus inflammation: mechanisms of transrepression. Trends Endocrinol Metab 17(8):321–327. doi: 10.1016/j.tem.2006.08.005 S1043-2760(06)00156-1 [pii]
  90. Peiris M, Monteith GR, Roberts-Thomson SJ, Cabot PJ (2007) A model of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice for the characterisation of intervention therapies. J Neurosci Methods 163(2):245–254PubMedCrossRefGoogle Scholar
  91. Perrin RJ, Fagan AM, Holtzman DM (2009) Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease. Nature 461(7266):916–922. doi: 10.1038/nature08538 nature08538 [pii]
  92. Picou F, Fauquier T, Chatonnet F, Flamant F (2012) A bimodal influence of thyroid hormone on cerebellum oligodendrocyte differentiation. Mol Endocrinol 26(4):608–618PubMedCrossRefGoogle Scholar
  93. Polak PE, Kalinin S, Dello RC, Gavrilyuk V, Sharp A, Peters JM, Richardson J, Willson TM, Weinberg G, Feinstein DL (2005) Protective effects of a peroxisome proliferator-activated receptor-beta/delta agonist in experimental autoimmune encephalomyelitis. J Neuroimmunol 168(1–2):65–75PubMedCrossRefGoogle Scholar
  94. Powers JM, Rubio A (1995) Selected leukodystrophies. Semin Pediatr Neurol 2(3):200–210PubMedCrossRefGoogle Scholar
  95. Powers JM, Liu Y, Moser AB, Moser HW (1992) The inflammatory myelinopathy of adreno-leukodystrophy: cells, effector molecules, and pathogenetic implications. J Neuropathol ExpNeurol 51(6):630–643CrossRefGoogle Scholar
  96. Powers JM, DeCiero DP, Ito M, Moser AB, Moser HW (2000) Adrenomyeloneuropathy: a neuropathologic review featuring its noninflammatory myelopathy. J Neuropathol ExpNeurol 59(2):89–102CrossRefGoogle Scholar
  97. Powers JM, DeCiero DP, Cox C, Richfield EK, Ito M, Moser AB, Moser HW (2001) The dorsal root ganglia in adrenomyeloneuropathy: neuronal atrophy and abnormal mitochondria. J Neuropathol ExpNeurol 60(5):493–501CrossRefGoogle Scholar
  98. Qi JS, Sai-Yajnik V, Greene ME, Raaka BM, Samuels HH (1995) The ligand-binding domains of the thyroid hormone/retinoid receptor gene subfamily function in vivo to mediate heterodimerization, gene silencing, and transactivation. Mol Cell Biol 15(3):1817–1825Google Scholar
  99. Qiu Y, Pereira FA, DeMayo FJ, Lydon JP, Tsai SY, Tsai MJ (1997) Null mutation of mCOUP-TFI results in defects in morphogenesis of the glossopharyngeal ganglion, axonal projection, and arborization. Genes Dev 11(15):1925–1937PubMedPubMedCentralCrossRefGoogle Scholar
  100. Raikwar HP, Muthian G, Rajasingh J, Johnson CN, Bright JJ (2006) PPARgamma antagonists reverse the inhibition of neural antigen-specific Th1 response and experimental allergic encephalomyelitis by Ciglitazone and 15-deoxy-Delta 12,14-prostaglandin J2. J Neuroimmunol 178(1–2):76–86PubMedCrossRefGoogle Scholar
  101. Rakic S, Zecevic N (2003) Early oligodendrocyte progenitor cells in the human fetal telencephalon. Glia 41(2):117–127PubMedCrossRefGoogle Scholar
  102. Rampler H, Weinhofer I, Netik A, Forss-Petter S, Brown PJ, Oplinger JA, Bugaut M, Berger J (2003) Evaluation of the therapeutic potential of PPARalpha agonists for X-linked adrenoleukodystrophy. Mol Genet Metab 80(4):398–407PubMedCrossRefGoogle Scholar
  103. Rannou F, Francois M, Corvol MT, Berenbaum F (2006) Cartilage breakdown in rheumatoid arthritis. Joint Bone Spine 73(1):29–36. doi: 10.1016/j.jbspin.2004.12.013 S1297-319X(05)00095-3 [pii]
  104. Remels AH, Langen RC, Gosker HR, Russell AP, Spaapen F, Voncken JW, Schrauwen P, Schols AM (2009) PPARgamma inhibits NF-kappaB-dependent transcriptional activation in skeletal muscle. Am J Physiol Endocrinol Metab 297(1):E174–E183PubMedCrossRefGoogle Scholar
  105. Riddell DR, Zhou H, Comery TA, Kouranova E, Lo CF, Warwick HK, Ring RH, Kirksey Y, Aschmies S, Xu J, Kubek K, Hirst WD, Gonzales C, Chen Y, Murphy E, Leonard S, Vasylyev D, Oganesian A, Martone RL, Pangalos MN, Reinhart PH, Jacobsen JS (2007) The LXR agonist TO901317 selectively lowers hippocampal Abeta42 and improves memory in the Tg2576 mouse model of Alzheimer’s disease. Mol Cell Neurosci 34(4):621–628PubMedCrossRefGoogle Scholar
  106. Risner ME, Saunders AM, Altman JF, Ormandy GC, Craft S, Foley IM, Zvartau-Hind ME, Hosford DA, Roses AD (2006) Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease. Pharmacogenomics J 6(4):246–254PubMedGoogle Scholar
  107. Robinson E, Grieve DJ (2009) Significance of peroxisome proliferator-activated receptors in the cardiovascular system in health and disease. Pharmacol Ther 122(3):246–263PubMedCrossRefGoogle Scholar
  108. Roth AD, Leisewitz AV, Jung JE, Cassina P, Barbeito L, Inestrosa NC, Bronfman M (2003) PPAR gamma activators induce growth arrest and process extension in B12 oligodendrocyte-like cells and terminal differentiation of cultured oligodendrocytes. J Neurosci Res 72(4):425–435PubMedCrossRefGoogle Scholar
  109. Roy K, Kuznicki K, Wu Q, Sun Z, Bock D, Schutz G, Vranich N, Monaghan AP (2004) The Tlx gene regulates the timing of neurogenesis in the cortex. J Neurosci 24(38):8333–8345PubMedPubMedCentralCrossRefGoogle Scholar
  110. Sacchetti P, Sousa KM, Hall AC, Liste I, Steffensen KR, Theofilopoulos S, Parish CL, Hazenberg C, Richter LA, Hovatta O, Gustafsson JA, Arenas E (2009) Liver X receptors and oxysterols promote ventral midbrain neurogenesis in vivo and in human embryonic stem cells. Cell Stem Cell 5(4):409–419PubMedCrossRefGoogle Scholar
  111. Saher G, Brugger B, Lappe-Siefke C, Mobius W, Tozawa R, Wehr MC, Wieland F, Ishibashi S, Nave KA (2005) High cholesterol level is essential for myelin membrane growth. Nat Neurosci 8(4):468–475PubMedGoogle Scholar
  112. Saluja I, Granneman JG, Skoff RP (2001) PPAR delta agonists stimulate oligodendrocyte differentiation in tissue culture. Glia 33(3):191–204PubMedCrossRefGoogle Scholar
  113. Sastre M, Dewachter I, Landreth GE, Willson TM, Klockgether T, van LF, Heneka MT (2003) Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-gamma agonists modulate immunostimulated processing of amyloid precursor protein through regulation of beta-secretase. J Neurosci 23(30):9796–9804Google Scholar
  114. Sastre M, Dewachter I, Rossner S, Bogdanovic N, Rosen E, Borghgraef P, Evert BO, Dumitrescu-Ozimek L, Thal DR, Landreth G, Walter J, Klockgether T, van LF, Heneka MT (2006) Nonsteroidal anti-inflammatory drugs repress beta-secretase gene promoter activity by the activation of PPARgamma. Proc Natl Acad Sci USA 103(2):443–448Google Scholar
  115. Schulman IG (2010) Nuclear receptors as drug targets for metabolic disease. Adv Drug Deliv Rev 62(13):1307–1315. doi: 10.1016/j.addr.2010.07.002 Google Scholar
  116. Schultz JR, Tu H, Luk A, Repa JJ, Medina JC, Li L, Schwendner S, Wang S, Thoolen M, Mangelsdorf DJ, Lustig KD, Shan B (2000) Role of LXRs in control of lipogenesis. Genes Dev 14(22):2831–2838PubMedPubMedCentralCrossRefGoogle Scholar
  117. Shackleford G, Makoukji J, Grenier J, Liere P, Meffre D, Massaad C (2013) Differential regulation of Wnt/beta-catenin signaling by Liver X Receptors in Schwann cells and oligodendrocytes. Biochem Pharmacol 86(1):106–114. doi: 10.1016/j.bcp.2013.02.036 S0006-2952(13)00163-9 [pii]
  118. Shao D, Liu Y, Liu X, Zhu L, Cui Y, Cui A, Qiao A, Kong X, Chen Q, Gupta N, Fang F, Chang Y (2010) PGC-1 beta-regulated mitochondrial biogenesis and function in myotubes is mediated by NRF-1 and ERR alpha. Mitochondrion 10(5):516–527PubMedCrossRefGoogle Scholar
  119. Shenoy SD, Spencer TA, Mercer-Haines NA, Alipour M, Gargano MD, Runge-Morris M, Kocarek TA (2004) CYP3A induction by liver x receptor ligands in primary cultured rat and mouse hepatocytes is mediated by the pregnane X receptor. Drug Metab Dispos 32(1):66–71PubMedCrossRefGoogle Scholar
  120. Sherman DL, Brophy PJ (2005) Mechanisms of axon ensheathment and myelin growth. Nat Rev Neurosci 6(9):683–690PubMedCrossRefGoogle Scholar
  121. Shi Y, Chichung LD, Taupin P, Nakashima K, Ray J, Yu RT, Gage FH, Evans RM (2004) Expression and function of orphan nuclear receptor TLX in adult neural stem cells. Nature 427(6969):78–83PubMedCrossRefGoogle Scholar
  122. Shimizu K, Mitchell RN, Libby P (2006) Inflammation and cellular immune responses in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 26(5):987–994. doi: 10.1161/01.ATV.0000214999.12921.4f 01.ATV.0000214999.12921.4f [pii]
  123. Singh I (1997) Biochemistry of peroxisomes in health and disease. Mol Cell Biochem 167(1–2):1–29PubMedCrossRefGoogle Scholar
  124. Singh I, Moser AE, Moser HW, Kishimoto Y (1984) Adrenoleukodystrophy: impaired oxidation of very long chain fatty acids in white blood cells, cultured skin fibroblasts, and amniocytes. Pediatr Res 18(3):286–290PubMedCrossRefGoogle Scholar
  125. Sonoda J, Pei L, Evans RM (2008) Nuclear receptors: Decoding metabolic disease. FEBS Lett 582(1):2–9. doi: 10.1016/j.febslet.2007.11.016 PubMedCrossRefGoogle Scholar
  126. Stathopoulou A, Christopoulos P, Soubasi E, Gourzis P (2010) Personality characteristics and disorders in multiple sclerosis patients: assessment and treatment. Int Rev Psychiatry 22(1):43–54PubMedCrossRefGoogle Scholar
  127. Steffensen KR, Jakobsson T, Gustafsson JA (2013) Targeting liver X receptors in inflammation. Expert Opin Ther Targets 17(8):977–990. doi: 10.1517/14728222.2013.806490 PubMedCrossRefGoogle Scholar
  128. Sugden MC, Caton PW, Holness MJ (2010) PPAR control: it’s SIRTainly as easy as PGC. J Endocrinol 204(2):93–104PubMedCrossRefGoogle Scholar
  129. Sun G, Yu RT, Evans RM, Shi Y (2007) Orphan nuclear receptor TLX recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation. Proc Natl Acad Sci USA 104(39):15282–15287PubMedPubMedCentralCrossRefGoogle Scholar
  130. Suzuki K (1983) The twitcher mouse. A model of human globoid cell leukodystrophy (krabbe’s disease). Am J Pathol 111(3):394–397PubMedPubMedCentralGoogle Scholar
  131. Suzuki K (2003) Globoid cell leukodystrophy (Krabbe’s disease): update. J Child Neurol 18(9):595–603PubMedCrossRefGoogle Scholar
  132. Suzuki K, Taniike M (1995) Murine model of genetic demyelinating disease: the twitcher mouse. Microsc Res Tech 32(3):204–214PubMedCrossRefGoogle Scholar
  133. Tokuzawa Y, Kaiho E, Maruyama M, Takahashi K, Mitsui K, Maeda M, Niwa H, Yamanaka S (2003) Fbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse development. Mol Cell Biol 23(8):2699–2708PubMedPubMedCentralCrossRefGoogle Scholar
  134. Toney LM, Cattoretti G, Graf JA, Merghoub T, Pandolfi PP, Dalla-Favera R, Ye BH, Dent AL (2000) BCL-6 regulates chemokine gene transcription in macrophages. Nat Immunol 1(3):214–220. doi: 10.1038/79749 PubMedCrossRefGoogle Scholar
  135. Tyler WA, Gangoli N, Gokina P, Kim HA, Covey M, Levison SW, Wood TL (2009) Activation of the mammalian target of rapamycin (mTOR) is essential for oligodendrocyte differentiation. J Neurosci 29(19):6367–6378PubMedPubMedCentralCrossRefGoogle Scholar
  136. van Geel BM, Bezman L, Loes DJ, Moser HW, Raymond GV (2001) Evolution of phenotypes in adult male patients with X-linked adrenoleukodystrophy. Ann Neurol 49(2):186–194PubMedCrossRefGoogle Scholar
  137. Vanmierlo T, Rutten K, Dederen J, Bloks VW, van Vark-van der Z, Kuipers F, Kiliaan A, Blokland A, Sijbrands EJ, Steinbusch H, Prickaerts J, Lutjohann D, Mulder M (2011) Liver X receptor activation restores memory in aged AD mice without reducing amyloid. Neurobiol Aging 32(7):1262–1272Google Scholar
  138. Wagner EF, Eferl R (2005) Fos/AP-1 proteins in bone and the immune system. Immunol Rev 208:126–140. doi: 10.1111/j.0105-2896.2005.00332.x IMR332 [pii]
  139. Wanders RJ (1999) Peroxisomal disorders: clinical, biochemical, and molecular aspects. Neurochem Res 24(4):565–580PubMedCrossRefGoogle Scholar
  140. Wareski P, Vaarmann A, Choubey V, Safiulina D, Liiv J, Kuum M, Kaasik A (2009) PGC-1{alpha} and PGC-1{beta} regulate mitochondrial density in neurons. J Biol Chem 284(32):21379–21385PubMedPubMedCentralCrossRefGoogle Scholar
  141. White AB, Givogri MI, Lopez-Rosas A, Cao H, van BR, Thinakaran G, Bongarzone ER (2009) Psychosine accumulates in membrane microdomains in the brain of krabbe patients, disrupting the raft architecture. J Neurosci 29(19):6068–6077Google Scholar
  142. Wojcicka G, Jamroz-Wisniewska A, Horoszewicz K, Beltowski J (2007) Liver X receptors (LXRs). Part I: structure, function, regulation of activity, and role in lipid metabolism. Postepy Hig Med Dosw (Online) 61:736–759Google Scholar
  143. Xiang Z, Valenza M, Cui L, Leoni V, Jeong HK, Brilli E, Zhang J, Peng Q, Duan W, Reeves SA, Cattaneo E, Krainc D (2011) Peroxisome-proliferator-activated receptor gamma coactivator 1 alpha contributes to dysmyelination in experimental models of Huntington’s disease. J Neurosci 31(26):9544–9553PubMedPubMedCentralCrossRefGoogle Scholar
  144. Xiao C, Ghosh S (2005) NF-κB, an Evolutionarily Conserved Mediator of Immune and Inflammatory Responses. In: Gupta S, Paul W, Steinman R (eds) Mechanisms of lymphocyte activation and immune regulation X, vol 560. Advances in Experimental Medicine and Biology. Springer US, pp 41–45. doi: 10.1007/0-387-24180-9_5
  145. Xu P, Xu H, Tang X, Xu L, Wang Y, Guo L, Yang Z, Xing Y, Wu Y, Warner M, Gustafsson JA, Fan X (2014) Liver X receptor beta is essential for the differentiation of radial glial cells to oligodendrocytes in the dorsal cortex. Mol Psychiatry 19(8):947–957PubMedCrossRefGoogle Scholar
  146. Yamaguchi H, Zhou C, Lin SC, Durand B, Tsai SY, Tsai MJ (2004) The nuclear orphan receptor COUP-TFI is important for differentiation of oligodendrocytes. Dev Biol 266(2):238–251PubMedCrossRefGoogle Scholar
  147. Yan Q, Zhang J, Liu H, Babu-Khan S, Vassar R, Biere AL, Citron M, Landreth G (2003) Anti-inflammatory drug therapy alters beta-amyloid processing and deposition in an animal model of Alzheimer’s disease. J Neurosci 23(20):7504–7509PubMedGoogle Scholar
  148. Yang HM, Do HJ, Kim DK, Park JK, Chang WK, Chung HM, Choi SY, Kim JH (2007) Transcriptional regulation of human Oct4 by steroidogenic factor-1. J Cell Biochem 101(5):1198–1209PubMedCrossRefGoogle Scholar
  149. Younes-Rapozo V, Berendonk J, Savignon T, Manhaes AC, Barradas PC (2006) Thyroid hormone deficiency changes the distribution of oligodendrocyte/myelin markers during oligodendroglial differentiation in vitro. Int J Dev Neurosci 24(7):445–453PubMedCrossRefGoogle Scholar
  150. Young KM, Psachoulia K, Tripathi RB, Dunn SJ, Cossell L, Attwell D, Tohyama K, Richardson WD (2013) Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling. Neuron 77(5):873–885PubMedPubMedCentralCrossRefGoogle Scholar
  151. Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9(11):798–809. doi: 10.1038/nrc2734 nrc2734 [pii]
  152. Zawadzka M, Rivers LE, Fancy SP, Zhao C, Tripathi R, Jamen F, Young K, Goncharevich A, Pohl H, Rizzi M, Rowitch DH, Kessaris N, Suter U, Richardson WD, Franklin RJ (2010) CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 6(6):578–590PubMedCrossRefGoogle Scholar
  153. Zelcer N, Khanlou N, Clare R, Jiang Q, Reed-Geaghan EG, Landreth GE, Vinters HV, Tontonoz P (2007) Attenuation of neuroinflammation and Alzheimer’s disease pathology by liver x receptors. Proc Natl Acad Sci USA 104(25):10601–10606PubMedPubMedCentralCrossRefGoogle Scholar
  154. Zhang CL, Zou Y, He W, Gage FH, Evans RM (2008) A role for adult TLX-positive neural stem cells in learning and behaviour. Nature 451(7181):1004–1007PubMedCrossRefGoogle Scholar
  155. Zhao X, Grotta J, Gonzales N, Aronowski J (2009) Hematoma resolution as a therapeutic target: the role of microglia/macrophages. Stroke 40(3 Suppl):S92–S94PubMedCrossRefGoogle Scholar
  156. Zolezzi JM, Bastías-Candia S, Santos MJ, Inestrosa NC (2014) Alzheimer’s disease: relevant molecular and physiopathological events affecting amyloid-β brain balance and the putative role of PPARs. Front Aging Neurosci 6. doi: 10.3389/fnagi.2014.00176
  157. Zuccaro E, Arlotta P (2013) The quest for myelin in the adult brain. Nat Cell Biol 15(6):572–575PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Adrián Sandoval-Hernández
    • 1
  • María José Contreras
    • 1
  • Jenny Jaramillo
    • 1
  • Gonzalo Arboleda
    • 1
    • 2
    Email author
  1. 1.Grupo de Neurociencias y Muerte Celular, Facultad de Medicina e Instituto de GenéticaUniversidad Nacional de ColombiaBogotáColombia
  2. 2.Departamento de Patología, Facultad de MedicinaUniversidad Nacional de ColombiaBogotáColombia

Personalised recommendations