Advertisement

Peripheral Inflammation and Demyelinating Diseases

  • Verónica Murta
  • Carina FerrariEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 949)

Abstract

In recent decades, several neurodegenerative diseases have been shown to be exacerbated by systemic inflammatory processes. There is a wide range of literature that demonstrates a clear but complex relationship between the central nervous system (CNS) and the immunological system, both under naïve or pathological conditions. In diseased brains, peripheral inflammation can transform “primed” microglia into an “active” state, which can trigger stronger pathological responses. Demyelinating diseases are a group of neurodegenerative diseases characterized by inflammatory lesions associated with demyelination, which in turn induces axonal damage, neurodegeneration, and progressive loss of function. Among them, the most important are multiple sclerosis (MS) and neuromyelitis optica (NMO). In this review, we will analyze the effect of specific peripheral inflammatory stimuli in the progression of demyelinating diseases and discuss their animal models. In most cases, peripheral immune stimuli are exacerbating.

Keywords

Demyelinating diseases Systemic inflammation Microglia Multiple sclerosis Neuromyelitis optica Experimental autoimmune encephalomyelitis 

Abbreviations and Acronyms

AQP4

Aquaporin-4

BBB

Blood–brain barrier

CCL2

Chemokine CC motif ligand 2

CCR2

Chemokine CC motif receptor 2

CD

Cluster of differentiation

CNS

Central nervous system

CSF

Cerebrospinal fluid

CXCR2

CXC motif chemokine receptor type 2

EAE

Experimental autoimmune encephalomyelitis

GC

Glucocorticoids

HPA

Hypothalamic-Pituitary-Adrenal

HPG

Hypothalamic-Pituitary-Gonadal

IFN

Interferons

IgG

Immunoglobulin G

IL

Interleukin

iNOS

Inducible nitric oxide synthase

MHC

Major histocompatibility complex

MS

Multiple sclerosis

NMO

Neuromyelitis optica

PMN

Polymorphonuclear

PPMS

Primary progressive MS

RRMS

Relapsing remitting multiple sclerosis

SGK1

Serum glucocorticoid kinase 1

SPMS

Secondary progressive multiple sclerosis

TGF-β

Transforming growth factor beta

Th

T helper

TLR

Toll-like receptors

TNF-α

Tumor necrosis factor α

WBC

White blood cells

Notes

Acknowledgments

Carina C. Ferrari and Verónica Murta are members of the Research Career of the National Council of Scientific and Technological Research (CONICET), Argentina. CF is supported by CONICET (PIP 2012-2014, 11220110100560) and National Agency of Science and Technology of Argentina (ANPCyT) (PICT 2012-2014).

References

  1. Almolda B, Gonzalez B, Castellano B (2011) Antigen presentation in EAE: role of microglia, macrophages and dendritic cells. Front Biosci 16:1157–1171 (3781 [pii])CrossRefGoogle Scholar
  2. Andersen O, Lygner PE, Bergstrom T, Andersson M, Vahlne A (1993) Viral infections trigger multiple sclerosis relapses: a prospective seroepidemiological study. J Neurol 240(7):417–422PubMedCrossRefGoogle Scholar
  3. Arimoto T, Bing G (2003) Up-regulation of inducible nitric oxide synthase in the substantia nigra by lipopolysaccharide causes microglial activation and neurodegeneration. Neurobiol Dis 12(1):35–45PubMedCrossRefGoogle Scholar
  4. Aubert A, Vega C, Dantzer R, Goodall G (1995) Pyrogens specifically disrupt the acquisition of a task involving cognitive processing in the rat. Brain Behav Immun 9(2):129–148. doi: 10.1006/brbi.1995.1013 (S0889-1591(85)71013-6 [pii])PubMedCrossRefGoogle Scholar
  5. Bakshi P, Margenthaler E, Reed J, Crawford F, Mullan M (2011) Depletion of CXCR2 inhibits gamma-secretase activity and amyloid-beta production in a murine model of Alzheimer’s disease. Cytokine 53(2):163–169 (10.1016/j.cyto.2010.10.008S1043-4666(10)00703-9 [pii])PubMedCrossRefGoogle Scholar
  6. Banisadr G, Rostene W, Kitabgi P, Parsadaniantz SM (2005) Chemokines and brain functions. Curr Drug Targets Inflamm Allergy 4(3):387–399PubMedCrossRefGoogle Scholar
  7. Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55(4):458–468PubMedCrossRefGoogle Scholar
  8. Batocchi AP, Rotondi M, Caggiula M, Frisullo G, Odoardi F, Nociti V, Carella C, Tonali PA, Mirabella M (2003) Leptin as a marker of multiple sclerosis activity in patients treated with interferon-beta. J Neuroimmunol 139(1–2):150–154 (S0165572803001541 [pii])PubMedCrossRefGoogle Scholar
  9. Berkenbosch F, van Oers J, del Rey A, Tilders F, Besedovsky H (1987) Corticotropin-releasing factor-producing neurons in the rat activated by interleukin-1. Science 238(4826):524–526PubMedCrossRefGoogle Scholar
  10. Besedovsky HO, del Rey A (1996) Immune-neuro-endocrine interactions: facts and hypotheses. Endocr Rev 17(1):64–102PubMedCrossRefGoogle Scholar
  11. Blakemore WF (2008) Regeneration and repair in multiple sclerosis: the view of experimental pathology. J Neurol Sci 265(1–2):1–4PubMedCrossRefGoogle Scholar
  12. Blakemore WF, Franklin RJ (2008) Remyelination in experimental models of toxin-induced demyelination. Curr Top Microbiol Immunol 318:193–212PubMedGoogle Scholar
  13. Bradl M, Lassmann H (2009) Progressive multiple sclerosis. Semin Immunopathol 31(4):455–465. doi: 10.1007/s00281-009-0182-3 PubMedCrossRefGoogle Scholar
  14. Bradl M, Lassmann H (2014) Experimental models of neuromyelitis optica. Brain Pathol 24(1):74–82. doi: 10.1111/bpa.12098 PubMedCrossRefGoogle Scholar
  15. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535 (10.1126/science.1092385303/5663/1532 [pii])PubMedCrossRefGoogle Scholar
  16. Brocke S, Gaur A, Piercy C, Gautam A, Gijbels K, Fathman CG, Steinman L (1993) Induction of relapsing paralysis in experimental autoimmune encephalomyelitis by bacterial superantigen. Nature 365(6447):642–644. doi: 10.1038/365642a0 PubMedCrossRefGoogle Scholar
  17. Buenafe AC, Bourdette DN (2007) Lipopolysaccharide pretreatment modulates the disease course in experimental autoimmune encephalomyelitis. J Neuroimmunol 182(1–2):32–40. doi: 10.1016/j.jneuroim.2006.09.004 (S0165-5728(06)00371-7 [pii])PubMedCrossRefGoogle Scholar
  18. Buljevac D, Flach HZ, Hop WC, Hijdra D, Laman JD, Savelkoul HF, van Der Meche FG, van Doorn PA, Hintzen RQ (2002) Prospective study on the relationship between infections and multiple sclerosis exacerbations. Brain 125(Pt 5):952–960PubMedCrossRefGoogle Scholar
  19. Byravan S, Foster LM, Phan T, Verity AN, Campagnoni AT (1994) Murine oligodendroglial cells express nerve growth factor. Proc Natl Acad Sci USA 91(19):8812–8816PubMedPubMedCentralCrossRefGoogle Scholar
  20. Campbell SJ, Anthony DC, Oakley F, Carlsen H, Elsharkawy AM, Blomhoff R, Mann DA (2008) Hepatic nuclear factor kappa B regulates neutrophil recruitment to the injured brain. J Neuropathol Exp Neurol 67(3):223–230 (10.1097/NEN.0b013e318165495700005072-200803000-00005 [pii])PubMedCrossRefGoogle Scholar
  21. Campbell SJ, Meier U, Mardiguian S, Jiang Y, Littleton ET, Bristow A, Relton J, Connor TJ, Anthony DC (2010) Sickness behaviour is induced by a peripheral CXC-chemokine also expressed in multiple sclerosis and EAE. Brain Behav Immun 24(5):738–746 (S0889-1591(10)00038-3 [pii] 10.1016/j.bbi.2010.01.011)PubMedCrossRefGoogle Scholar
  22. Cardona AE, Li M, Liu L, Savarin C, Ransohoff RM (2008) Chemokines in and out of the central nervous system: much more than chemotaxis and inflammation. J Leukoc Biol 84(3):587–594 (10.1189/jlb.1107763jlb.1107763 [pii])PubMedPubMedCentralCrossRefGoogle Scholar
  23. Carlson T, Kroenke M, Rao P, Lane TE, Segal B (2008) The Th17-ELR + CXC chemokine pathway is essential for the development of central nervous system autoimmune disease. J Exp Med 205(4):811–823 (jem.20072404 [pii] 10.1084/jem.20072404)PubMedPubMedCentralCrossRefGoogle Scholar
  24. Combrinck MI, Perry VH, Cunningham C (2002) Peripheral infection evokes exaggerated sickness behaviour in pre-clinical murine prion disease. Neuroscience 112(1):7–11PubMedCrossRefGoogle Scholar
  25. Correale J, Farez MF (2011a) The impact of environmental infections (parasites) on MS activity. Mult Scler 17(10):1162–1169 (17/10/1162 [pii] 10.1177/1352458511418027)PubMedCrossRefGoogle Scholar
  26. Correale J, Farez MF (2011b) The impact of parasite infections on the course of multiple sclerosis. J Neuroimmunol 233(1–2):6–11 (S0165-5728(11)00005-1 [pii] 10.1016/j.jneuroim.2011.01.002)PubMedCrossRefGoogle Scholar
  27. Crisi GM, Santambrogio L, Hochwald GM, Smith SR, Carlino JA, Thorbecke GJ (1995) Staphylococcal enterotoxin B and tumor-necrosis factor-alpha-induced relapses of experimental allergic encephalomyelitis: protection by transforming growth factor-beta and interleukin-10. Eur J Immunol 25(11):3035–3040. doi: 10.1002/eji.1830251108 PubMedCrossRefGoogle Scholar
  28. Cunningham C, Wilcockson DC, Boche D, Perry VH (2005a) Comparison of inflammatory and acute-phase responses in the brain and peripheral organs of the ME7 model of prion disease. J Virol 79(8):5174–5184 (79/8/5174 [pii] 10.1128/JVI.79.8.5174-5184.2005)PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cunningham C, Wilcockson DC, Campion S, Lunnon K, Perry VH (2005b) Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J Neurosci 25(40):9275–9284PubMedCrossRefGoogle Scholar
  30. Czlonkowska A, Kurkowska-Jastrzebska I, Czlonkowski A, Peter D, Stefano GB (2002) Immune processes in the pathogenesis of Parkinson’s disease—a potential role for microglia and nitric oxide. Med Sci Monit 8(8):165–177Google Scholar
  31. Chang A, Tourtellotte WW, Rudick R, Trapp BD (2002) Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med 346(3):165–173 (10.1056/NEJMoa010994346/3/165 [pii])PubMedCrossRefGoogle Scholar
  32. D’Mello C, Le T, Swain MG (2009) Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation. J Neurosci 29(7):2089–2102 (29/7/2089 [pii] 10.1523/JNEUROSCI.3567-08.2009)PubMedCrossRefGoogle Scholar
  33. Dai X, Lercher LD, Clinton PM, Du Y, Livingston DL, Vieira C, Yang L, Shen MM, Dreyfus CF (2003) The trophic role of oligodendrocytes in the basal forebrain. J Neurosci 23(13):5846–5853 (23/13/5846 [pii])PubMedGoogle Scholar
  34. Dantzer R, Bluthe RM, Laye S, Bret-Dibat JL, Parnet P, Kelley KW (1998) Cytokines and sickness behavior. Ann N Y Acad Sci 840:586–590PubMedCrossRefGoogle Scholar
  35. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56 (nrn2297 [pii] 10.1038/nrn2297)PubMedPubMedCentralCrossRefGoogle Scholar
  36. De Rosa V, Procaccini C, La Cava A, Chieffi P, Nicoletti GF, Fontana S, Zappacosta S, Matarese G (2006) Leptin neutralization interferes with pathogenic T cell autoreactivity in autoimmune encephalomyelitis. J Clin Invest 116(2):447–455. doi: 10.1172/JCI26523 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Denic A, Johnson AJ, Bieber AJ, Warrington AE, Rodriguez M, Pirko I (2011) The relevance of animal models in multiple sclerosis research. Pathophysiology 18(1):21–29 (S0928-4680(10)00022-2 [pii] 10.1016/j.pathophys.2010.04.004)PubMedCrossRefGoogle Scholar
  38. Dilger RN, Johnson RW (2008) Aging, microglial cell priming, and the discordant central inflammatory response to signals from the peripheral immune system. J Leukoc Biol 84(4):932–939 (jlb.0208108 [pii] 10.1189/jlb.0208108)PubMedPubMedCentralCrossRefGoogle Scholar
  39. Du C, Yao SY, Ljunggren-Rose A, Sriram S (2002) Chlamydia pneumoniae infection of the central nervous system worsens experimental allergic encephalitis. J Exp Med 196(12):1639–1644PubMedPubMedCentralCrossRefGoogle Scholar
  40. Du Y, Dreyfus CF (2002) Oligodendrocytes as providers of growth factors. J Neurosci Res 68(6):647–654. doi: 10.1002/jnr.10245 PubMedCrossRefGoogle Scholar
  41. Dunn SE, Gunde E, Lee H (2015a) Sex-based differences in multiple sclerosis (MS): part II: rising incidence of multiple sclerosis in women and the vulnerability of men to progression of this disease. Curr Top Behav Neurosci. doi: 10.1007/7854_2015_370 Google Scholar
  42. Dunn SE, Lee H, Pavri FR, Zhang MA (2015b) Sex-based differences in multiple sclerosis (part I): biology of disease incidence. Curr Top Behav Neurosci. doi: 10.1007/7854_2015_371 Google Scholar
  43. Edwards LJ, Sharrack B, Ismail A, Tumani H, Constantinescu CS (2011) Central inflammation versus peripheral regulation in multiple sclerosis. J Neurol 258(8):1518–1527. doi: 10.1007/s00415-011-5973-5 PubMedCrossRefGoogle Scholar
  44. Ferrari CC, Depino AM, Prada F, Muraro N, Campbell S, Podhajcer O, Perry VH, Anthony DC, Pitossi FJ (2004) Reversible demyelination, blood-brain barrier breakdown, and pronounced neutrophil recruitment induced by chronic il-1 expression in the brain. Am J Pathol 165(5):1827–1837PubMedPubMedCentralCrossRefGoogle Scholar
  45. Ferrari CC, Tarelli R (2011) Parkinson’s disease and systemic inflammation. Parkinsons Dis 2011:436813. doi: 10.4061/2011/436813 PubMedPubMedCentralGoogle Scholar
  46. Frank MG, Miguel ZD, Watkins LR, Maier SF (2010) Prior exposure to glucocorticoids sensitizes the neuroinflammatory and peripheral inflammatory responses to E. coli lipopolysaccharide. Brain Behav Immun 24(1):19–30 (S0889-1591(09)00386-9 [pii] 10.1016/j.bbi.2009.07.008)PubMedCrossRefGoogle Scholar
  47. Fung A, Vizcaychipi M, Lloyd D, Wan Y, Ma D (2012) Central nervous system inflammation in disease related conditions: mechanistic prospects. Brain Res 1446:144–155 (10.1016/j.brainres.2012.01.061S0006-8993(12)00164-3 [pii])PubMedCrossRefGoogle Scholar
  48. Galiano M, Liu ZQ, Kalla R, Bohatschek M, Koppius A, Gschwendtner A, Xu S, Werner A, Kloss CU, Jones LL, Bluethmann H, Raivich G (2001) Interleukin-6 (IL6) and cellular response to facial nerve injury: effects on lymphocyte recruitment, early microglial activation and axonal outgrowth in IL6-deficient mice. Eur J Neurosci 14(2):327–341 (ejn1647 [pii])PubMedCrossRefGoogle Scholar
  49. Gao Z, Tsirka SE (2011) Animal Models of MS Reveal Multiple Roles of Microglia in Disease Pathogenesis. Neurol Res Int 2011:383087. doi: 10.1155/2011/383087 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Gautron L, Laye S (2009) Neurobiology of inflammation-associated anorexia. Front Neurosci 3:59. doi: 10.3389/neuro.23.003.2009 PubMedGoogle Scholar
  51. Glabinski AR, Tani M, Strieter RM, Tuohy VK, Ransohoff RM (1997) Synchronous synthesis of alpha- and beta-chemokines by cells of diverse lineage in the central nervous system of mice with relapses of chronic experimental autoimmune encephalomyelitis. Am J Pathol 150(2):617–630PubMedPubMedCentralGoogle Scholar
  52. Godbout JP, Chen J, Abraham J, Richwine AF, Berg BM, Kelley KW, Johnson RW (2005) Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system. FASEB J 19(10):1329–1331 (05-3776fje [pii] 10.1096/fj.05-3776fje)PubMedGoogle Scholar
  53. Golde TE, Streit WJ, Chakrabarty P (2013) Alzheimer’s disease risk alleles in TREM2 illuminate innate immunity in Alzheimer’s disease. Alzheimers Res Ther 5(3):24 (alzrt178 [pii] 10.1186/alzrt178)PubMedPubMedCentralCrossRefGoogle Scholar
  54. Grigoriadis N, Hadjigeorgiou GM (2006) Virus-mediated autoimmunity in Multiple Sclerosis. J Autoimmune Dis 3:1PubMedPubMedCentralCrossRefGoogle Scholar
  55. Haak S, Croxford AL, Kreymborg K, Heppner FL, Pouly S, Becher B, Waisman A (2009) IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice. J Clin Invest 119(1):61–69 (10.1172/JCI3599735997 [pii])PubMedGoogle Scholar
  56. Hampton MB, Kettle AJ, Winterbourn CC (1998) Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92(9):3007–3017PubMedGoogle Scholar
  57. Hauser SL, Doolittle TH, Lincoln R, Brown RH, Dinarello CA (1990) Cytokine accumulations in CSF of multiple sclerosis patients: frequent detection of interleukin-1 and tumor necrosis factor but not interleukin-6. Neurology 40(11):1735–1739PubMedCrossRefGoogle Scholar
  58. Hauser SL, Weiner HL, Che M, Shapiro ME, Gilles F, Letvin NL (1984) Prevention of experimental allergic encephalomyelitis (EAE) in the SJL/J mouse by whole body ultraviolet irradiation. J Immunol 132(3):1276–1281PubMedGoogle Scholar
  59. Henry CJ, Huang Y, Wynne AM, Godbout JP (2009) Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is associated with exaggerated induction of both pro-inflammatory IL-1beta and anti-inflammatory IL-10 cytokines. Brain Behav Immun 23(3):309–317 (S0889-1591(08)00348-6 [pii] 10.1016/j.bbi.2008.09.002)PubMedCrossRefGoogle Scholar
  60. Herrmann I, Kellert M, Schmidt H, Mildner A, Hanisch UK, Bruck W, Prinz M, Nau R (2006) Streptococcus pneumoniae Infection aggravates experimental autoimmune encephalomyelitis via Toll-like receptor 2. Infect Immun 74(8):4841–4848 (74/8/4841 [pii] 10.1128/IAI.00026-06)PubMedPubMedCentralCrossRefGoogle Scholar
  61. Hofstetter HH, Ibrahim SM, Koczan D, Kruse N, Weishaupt A, Toyka KV, Gold R (2005) Therapeutic efficacy of IL-17 neutralization in murine experimental autoimmune encephalomyelitis. Cell Immunol 237(2):123–130 (S0008-8749(05)00242-X [pii] 10.1016/j.cellimm.2005.11.002)PubMedCrossRefGoogle Scholar
  62. Huitinga I, Schmidt ED, van der Cammen MJ, Binnekade R, Tilders FJ (2000) Priming with interleukin-1beta suppresses experimental allergic encephalomyelitis in the Lewis rat. J Neuroendocrinol 12(12):1186–1193 574 [pii]PubMedCrossRefGoogle Scholar
  63. Janik JE, Curti BD, Considine RV, Rager HC, Powers GC, Alvord WG, Smith JW 2nd, Gause BL, Kopp WC (1997) Interleukin 1 alpha increases serum leptin concentrations in humans. J Clin Endocrinol Metab 82(9):3084–3086PubMedGoogle Scholar
  64. Kim SH, Kim W, Li XF, Jung IJ, Kim HJ (2011) Repeated treatment with rituximab based on the assessment of peripheral circulating memory B cells in patients with relapsing neuromyelitis optica over 2 years. Arch Neurol 68(11):1412–1420 (10.1001/archneurol.2011.154archneurol.2011.154 [pii])PubMedCrossRefGoogle Scholar
  65. Kim SU, de Vellis J (2005) Microglia in health and disease. J Neurosci Res 81(3):302–313PubMedCrossRefGoogle Scholar
  66. Konsman JP, Kelley K, Dantzer R (1999) Temporal and spatial relationships between lipopolysaccharide-induced expression of Fos, interleukin-1beta and inducible nitric oxide synthase in rat brain. Neuroscience 89(2):535–548 (S0306-4522(98)00368-6 [pii])PubMedCrossRefGoogle Scholar
  67. Kossmann T, Hans VH, Imhof HG, Stocker R, Grob P, Trentz O, Morganti-Kossmann C (1995) Intrathecal and serum interleukin-6 and the acute-phase response in patients with severe traumatic brain injuries. Shock 4(5):311–317PubMedCrossRefGoogle Scholar
  68. Krady JK, Lin HW, Liberto CM, Basu A, Kremlev SG, Levison SW (2008) Ciliary neurotrophic factor and interleukin-6 differentially activate microglia. J Neurosci Res 86(7):1538–1547. doi: 10.1002/jnr.21620 PubMedCrossRefGoogle Scholar
  69. Krieger M, Brunner T, Bischoff SC, von Tscharner V, Walz A, Moser B, Baggiolini M, Dahinden CA (1992) Activation of human basophils through the IL-8 receptor. J Immunol 149(8):2662–2667PubMedGoogle Scholar
  70. Kutzelnigg A, Lucchinetti CF, Stadelmann C, Bruck W, Rauschka H, Bergmann M, Schmidbauer M, Parisi JE, Lassmann H (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128(Pt 11):2705–2712 (awh641 [pii] 10.1093/brain/awh641)PubMedCrossRefGoogle Scholar
  71. Lappe-Siefke C, Goebbels S, Gravel M, Nicksch E, Lee J, Braun PE, Griffiths IR, Nave KA (2003) Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet 33(3):366–374 (10.1038/ng1095ng1095 [pii])PubMedCrossRefGoogle Scholar
  72. Larochelle C, Alvarez JI, Prat A (2011) How do immune cells overcome the blood-brain barrier in multiple sclerosis? FEBS Lett 585(23):3770–3780 (S0014-5793(11)00336-X [pii] 10.1016/j.febslet.2011.04.066)PubMedCrossRefGoogle Scholar
  73. Lee M, Schwab C, McGeer PL (2011) Astrocytes are GABAergic cells that modulate microglial activity. Glia 59(1):152–165. doi: 10.1002/glia.21087 PubMedCrossRefGoogle Scholar
  74. Lindquist S, Hassinger S, Lindquist JA, Sailer M (2011) The balance of pro-inflammatory and trophic factors in multiple sclerosis patients: effects of acute relapse and immunomodulatory treatment. Mult Scler 17(7):851–866 (1352458511399797 [pii] 10.1177/1352458511399797)PubMedCrossRefGoogle Scholar
  75. Ling PR, Schwartz JH, Bistrian BR (1997) Mechanisms of host wasting induced by administration of cytokines in rats. Am J Physiol 272(3 Pt 1):E333–E339PubMedGoogle Scholar
  76. Linington C, Engelhardt B, Kapocs G, Lassman H (1992) Induction of persistently demyelinated lesions in the rat following the repeated adoptive transfer of encephalitogenic T cells and demyelinating antibody. J Neuroimmunol 40(2–3):219–224PubMedCrossRefGoogle Scholar
  77. Liu L, Belkadi A, Darnall L, Hu T, Drescher C, Cotleur AC, Padovani-Claudio D, He T, Choi K, Lane TE, Miller RH, Ransohoff RM (2010) CXCR2-positive neutrophils are essential for cuprizone-induced demyelination: relevance to multiple sclerosis. Nat Neurosci 13(3):319–326 (nn.2491 [pii] 10.1038/nn.2491)PubMedPubMedCentralCrossRefGoogle Scholar
  78. Loddick S, Rothwell N (2002) Cytokines and neurodegeneration. In: Loddick S, Rothwell N (eds) Immune an inflammatory responses in the nervous system. Oxford University Press, Oxford, pp 90–105CrossRefGoogle Scholar
  79. London A, Cohen M, Schwartz M (2013) Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair. Front Cell Neurosci 7:34. doi: 10.3389/fncel.2013.00034 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Londono D, Cadavid D (2010) Bacterial lipoproteins can disseminate from the periphery to inflame the brain. Am J Pathol 176(6):2848–2857 (ajpath.2010.091235 [pii] 10.2353/ajpath.2010.091235)PubMedPubMedCentralCrossRefGoogle Scholar
  81. Matarese G, Di Giacomo A, Sanna V, Lord GM, Howard JK, Di Tuoro A, Bloom SR, Lechler RI, Zappacosta S, Fontana S (2001) Requirement for leptin in the induction and progression of autoimmune encephalomyelitis. J Immunol 166(10):5909–5916PubMedCrossRefGoogle Scholar
  82. Matarese G, Procaccini C, De Rosa V (2008) The intricate interface between immune and metabolic regulation: a role for leptin in the pathogenesis of multiple sclerosis? J Leukoc Biol 84(4):893–899 (jlb.0108022 [pii] 10.1189/jlb.0108022)PubMedCrossRefGoogle Scholar
  83. McColl BW, Rothwell NJ, Allan SM (2007) Systemic inflammatory stimulus potentiates the acute phase and CXC chemokine responses to experimental stroke and exacerbates brain damage via interleukin-1- and neutrophil-dependent mechanisms. J Neurosci 27(16):4403–4412PubMedCrossRefGoogle Scholar
  84. McQuaid S, Cunnea P, McMahon J, Fitzgerald U (2009) The effects of blood-brain barrier disruption on glial cell function in multiple sclerosis. Biochem Soc Trans 37(Pt 1):329–331PubMedCrossRefGoogle Scholar
  85. Minghetti L, Polazzi E, Nicolini A, Greco A, Levi G (1999) Possible role of microglial prostanoids and free radicals in neuroprotection and neurodegeneration. Adv Exp Med Biol 468:109–119PubMedCrossRefGoogle Scholar
  86. Moreno B, Jukes JP, Vergara-Irigaray N, Errea O, Villoslada P, Perry VH, Newman TA (2011) Systemic inflammation induces axon injury during brain inflammation. Ann Neurol 70(6):932–942. doi: 10.1002/ana.22550 PubMedCrossRefGoogle Scholar
  87. Mosher B, Dean R, Harkema J, Remick D, Palma J, Crockett E (2001) Inhibition of Kupffer cells reduced CXC chemokine production and liver injury. J Surg Res 99(2):201–210 (10.1006/jsre.2001.6217S0022-4804(01)96217-1 [pii])PubMedCrossRefGoogle Scholar
  88. Moynagh PN (2005) The interleukin-1 signalling pathway in astrocytes: a key contributor to inflammation in the brain. J Anat 207(3):265–269 (JOA445 [pii] 10.1111/j.1469-7580.2005.00445.x)PubMedPubMedCentralCrossRefGoogle Scholar
  89. Murphy JB, Sturm E (1923) Conditions Determining the Transplantability of Tissues in the Brain. J Exp Med 38(2):183–197PubMedPubMedCentralCrossRefGoogle Scholar
  90. Murta V, Farias MI, Pitossi FJ, Ferrari CC (2015) Chronic systemic IL-1beta exacerbates central neuroinflammation independently of the blood-brain barrier integrity. J Neuroimmunol 278:30–43 (10.1016/j.jneuroim.2014.11.023S0165-5728(14)00984-9 [pii])PubMedCrossRefGoogle Scholar
  91. Murta V, Ferrari CC (2013) Influence of Peripheral inflammation on the progression of multiple sclerosis: evidence from the clinic and experimental animal models. Mol Cell Neurosci 53:6–13 (10.1016/j.mcn.2012.06.004S1044-7431(12)00108-X [pii])PubMedCrossRefGoogle Scholar
  92. Nathan C (2006) Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6(3):173–182 nri1785 [pii] 10.1038/nri1785PubMedCrossRefGoogle Scholar
  93. Neumann H, Misgeld T, Matsumuro K, Wekerle H (1998) Neurotrophins inhibit major histocompatibility class II inducibility of microglia: involvement of the p75 neurotrophin receptor. Proc Natl Acad Sci USA 95(10):5779–5784PubMedPubMedCentralCrossRefGoogle Scholar
  94. Ng RL, Scott NM, Strickland DH, Gorman S, Grimbaldeston MA, Norval M, Waithman J, Hart PH (2013) Altered immunity and dendritic cell activity in the periphery of mice after long-term engraftment with bone marrow from ultraviolet-irradiated mice. J Immunol 190(11):5471–5484 (10.4049/jimmunol.1202786jimmunol.1202786 [pii])PubMedCrossRefGoogle Scholar
  95. Nicot A (2009) Gender and sex hormones in multiple sclerosis pathology and therapy. Front Biosci (Landmark Ed) 14:4477–4515 (3543 [pii])CrossRefGoogle Scholar
  96. Nishiyori A, Minami M, Takami S, Satoh M (1997) Type 2 interleukin-1 receptor mRNA is induced by kainic acid in the rat brain. Brain Res Mol Brain Res 50(1–2):237–245PubMedCrossRefGoogle Scholar
  97. Nogai A, Siffrin V, Bonhagen K, Pfueller CF, Hohnstein T, Volkmer-Engert R, Bruck W, Stadelmann C, Kamradt T (2005) Lipopolysaccharide injection induces relapses of experimental autoimmune encephalomyelitis in nontransgenic mice via bystander activation of autoreactive CD4 + cells. J Immunol 175(2):959–966 (175/2/959 [pii])PubMedCrossRefGoogle Scholar
  98. O’Connor JC, Satpathy A, Hartman ME, Horvath EM, Kelley KW, Dantzer R, Johnson RW, Freund GG (2005) IL-1beta-mediated innate immunity is amplified in the db/db mouse model of type 2 diabetes. J Immunol 174(8):4991–4997 (174/8/4991 [pii])PubMedCrossRefGoogle Scholar
  99. Oh JW, Van Wagoner NJ, Rose-John S, Benveniste EN (1998) Role of IL-6 and the soluble IL-6 receptor in inhibition of VCAM-1 gene expression. J Immunol 161(9):4992–4999PubMedGoogle Scholar
  100. Oka Y, Ibuki T, Matsumura K, Namba M, Yamazaki Y, Poole S, Tanaka Y, Kobayashi S (2007) Interleukin-6 is a candidate molecule that transmits inflammatory information to the CNS. Neuroscience 145(2):530–538 (S0306-4522(06)01470-9 [pii] 10.1016/j.neuroscience.2006.10.055)PubMedCrossRefGoogle Scholar
  101. Okada S, Nakamura M, Katoh H, Miyao T, Shimazaki T, Ishii K, Yamane J, Yoshimura A, Iwamoto Y, Toyama Y, Okano H (2006) Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat Med 12(7):829–834 (nm1425 [pii] 10.1038/nm1425)PubMedCrossRefGoogle Scholar
  102. Ott L, McClain CJ, Gillespie M, Young B (1994) Cytokines and metabolic dysfunction after severe head injury. J Neurotrauma 11(5):447–472PubMedCrossRefGoogle Scholar
  103. Ottani A, Giuliani D, Mioni C, Galantucci M, Minutoli L, Bitto A, Altavilla D, Zaffe D, Botticelli AR, Squadrito F, Guarini S (2009) Vagus nerve mediates the protective effects of melanocortins against cerebral and systemic damage after ischemic stroke. J Cereb Blood Flow Metab 29(3):512–523 (10.1038/jcbfm.2008.140jcbfm2008140 [pii])PubMedCrossRefGoogle Scholar
  104. Palin K, Cunningham C, Forse P, Perry VH, Platt N (2008) Systemic inflammation switches the inflammatory cytokine profile in CNS Wallerian degeneration. Neurobiol Dis 30(1):19–29 (S0969-9961(07)00267-7 [pii] 10.1016/j.nbd.2007.11.012)PubMedCrossRefGoogle Scholar
  105. Panitch HS (1994) Influence of infection on exacerbations of multiple sclerosis. Ann Neurol 36(Suppl):S25–S28PubMedCrossRefGoogle Scholar
  106. Perry V, Cunningham C, Boche D (2002) Atypical inflammation in the central nervous system in prion disease. Curr Opin Neurol 15:349–354PubMedCrossRefGoogle Scholar
  107. Perry VH, Newman TA, Cunningham C (2003) The impact of systemic infection on the progression of neurodegenerative disease. Nat Rev Neurosci 4(2):103–112PubMedCrossRefGoogle Scholar
  108. Perry VH, Teeling J (2013) Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin Immunopathol. doi: 10.1007/s00281-013-0382-8 PubMedPubMedCentralGoogle Scholar
  109. Piccinni MP, Giudizi MG, Biagiotti R, Beloni L, Giannarini L, Sampognaro S, Parronchi P, Manetti R, Annunziato F, Livi C et al (1995) Progesterone favors the development of human T helper cells producing Th2-type cytokines and promotes both IL-4 production and membrane CD30 expression in established Th1 cell clones. J Immunol 155(1):128–133PubMedGoogle Scholar
  110. Pitossi F, del Rey A, Kabiersch A, Besedovsky H (1997) Induction of cytokine transcripts in the central nervous system and pituitary following peripheral administration of endotoxin to mice. J Neurosci Res 48(4):287–298PubMedCrossRefGoogle Scholar
  111. Playfair JHL, Chain BM (1979) Immunology at a glance. Blackwell Science Publishing, LondonGoogle Scholar
  112. Pocock JM, Kettenmann H (2007) Neurotransmitter receptors on microglia. Trends Neurosci 30(10):527–535 (S0166-2236(07)00211-1 [pii] 10.1016/j.tins.2007.07.007)PubMedCrossRefGoogle Scholar
  113. Procaccini C, Pucino V, De Rosa V, Marone G, Matarese G (2014) Neuro-endocrine networks controlling immune system in health and disease. Front Immunol 5:143 (10.3389/fimmu.2014.00143)PubMedPubMedCentralCrossRefGoogle Scholar
  114. Qian J, Zhu L, Li Q, Belevych N, Chen Q, Zhao F, Herness S, Quan N (2012) Interleukin-1R3 mediates interleukin-1-induced potassium current increase through fast activation of Akt kinase. Proc Natl Acad Sci USA 109(30):12189–12194 (10.1073/pnas.12052071091205207109 [pii])PubMedPubMedCentralCrossRefGoogle Scholar
  115. Quan C, Yu H, Qiao J, Xiao B, Zhao G, Wu Z, Li Z, Lu C (2013) Impaired regulatory function and enhanced intrathecal activation of B cells in neuromyelitis optica: distinct from multiple sclerosis. Mult Scler 19(3):289–298 (10.1177/13524585124547711352458512454771 [pii])PubMedCrossRefGoogle Scholar
  116. Ransohoff RM, Liu L, Cardona AE (2007) Chemokines and chemokine receptors: multipurpose players in neuroinflammation. Int Rev Neurobiol 82:187–204 (S0074-7742(07)82010-1 [pii] 10.1016/S0074-7742(07)82010-1)PubMedCrossRefGoogle Scholar
  117. Rivest S, Lacroix S, Vallieres L, Nadeau S, Zhang J, Laflamme N (2000) How the blood talks to the brain parenchyma and the paraventricular nucleus of the hypothalamus during systemic inflammatory and infectious stimuli. Proc Soc Exp Biol Med 223(1):22–38 (pse22304 [pii])PubMedCrossRefGoogle Scholar
  118. Romeo HE, Tio DL, Rahman SU, Chiappelli F, Taylor AN (2001) The glossopharyngeal nerve as a novel pathway in immune-to-brain communication: relevance to neuroimmune surveillance of the oral cavity. J Neuroimmunol 115(1–2):91–100 (S0165572801002703 [pii])PubMedCrossRefGoogle Scholar
  119. Samad TA, Moore KA, Sapirstein A, Billet S, Allchorne A, Poole S, Bonventre JV, Woolf CJ (2001) Interleukin-1beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature 410(6827):471–475 (10.1038/3506856635068566 [pii])PubMedCrossRefGoogle Scholar
  120. Schafer KH, Mestres P, Marz P, Rose-John S (1999) The IL-6/sIL-6R fusion protein hyper-IL-6 promotes neurite outgrowth and neuron survival in cultured enteric neurons. J Interferon Cytokine Res 19(5):527–532. doi: 10.1089/107999099313974 PubMedCrossRefGoogle Scholar
  121. Schiffenbauer J, Johnson HM, Butfiloski EJ, Wegrzyn L, Soos JM (1993) Staphylococcal enterotoxins can reactivate experimental allergic encephalomyelitis. Proc Natl Acad Sci USA 90(18):8543–8546PubMedPubMedCentralCrossRefGoogle Scholar
  122. Schmitz T, Chew LJ (2008) Cytokines and myelination in the central nervous system. Sci World J 8:1119–1147. doi: 10.1100/tsw.2008.140 CrossRefGoogle Scholar
  123. Semple BD, Bye N, Ziebell JM, Morganti-Kossmann MC (2010) Deficiency of the chemokine receptor CXCR2 attenuates neutrophil infiltration and cortical damage following closed head injury. Neurobiol Dis 40(2):394–403 (10.1016/j.nbd.2010.06.015S0969-9961(10)00211-1 [pii])PubMedCrossRefGoogle Scholar
  124. Seo JH, Miyamoto N, Hayakawa K, Pham LD, Maki T, Ayata C, Kim KW, Lo EH, Arai K (2013) Oligodendrocyte precursors induce early blood-brain barrier opening after white matter injury. J Clin Invest 123(2):782–786 (10.1172/JCI6586365863 [pii])PubMedPubMedCentralGoogle Scholar
  125. Serres S, Anthony DC, Jiang Y, Broom KA, Campbell SJ, Tyler DJ, van Kasteren SI, Davis BG, Sibson NR (2009) Systemic inflammatory response reactivates immune-mediated lesions in rat brain. J Neurosci 29(15):4820–4828 (29/15/4820 [pii] 10.1523/JNEUROSCI.0406-09.2009)PubMedCrossRefGoogle Scholar
  126. Sly LM, Krzesicki RF, Brashler JR, Buhl AE, McKinley DD, Carter DB, Chin JE (2001) Endogenous brain cytokine mRNA and inflammatory responses to lipopolysaccharide are elevated in the Tg2576 transgenic mouse model of Alzheimer’s disease. Brain Res Bull 56(6):581–588 (S0361923001007304 [pii])PubMedCrossRefGoogle Scholar
  127. Sorrells SF, Sapolsky RM (2010) Glucocorticoids can arm macrophages for innate immune battle. Brain Behav Immun 24(1):17–18 (S0889-1591(09)00468-1 [pii] 10.1016/j.bbi.2009.10.004)PubMedCrossRefGoogle Scholar
  128. Takii T, Akahoshi T, Kato K, Hayashi H, Marunouchi T, Onozaki K (1992) Interleukin-1 up-regulates transcription of its own receptor in a human fibroblast cell line TIG-1: role of endogenous PGE2 and cAMP. Eur J Immunol 22(5):1221–1227. doi: 10.1002/eji.1830220517 PubMedCrossRefGoogle Scholar
  129. Takii T, Hayashi H, Marunouchi T, Onozaki K (1994) Interleukin-1 down-regulates type I interleukin 1 receptor mRNA expression in a human fibroblast cell line TIG-1 in the absence of prostaglandin E2 synthesis. Lymphokine Cytokine Res 13(3):213–219PubMedGoogle Scholar
  130. Tauber SC, Nau R, Gerber J (2007) Systemic infections in multiple sclerosis and experimental autoimmune encephalomyelitis. Arch Physiol Biochem 113(3):124–130 (782870844 [pii] 10.1080/13813450701531227)PubMedCrossRefGoogle Scholar
  131. Teeling JL, Perry VH (2009) Systemic infection and inflammation in acute CNS injury and chronic neurodegeneration: underlying mechanisms. Neuroscience 158(3):1062–1073 (S0306-4522(08)01045-2 [pii] 10.1016/j.neuroscience.2008.07.031)PubMedCrossRefGoogle Scholar
  132. Trenova AG, Manova MG, Kostadinova II, Murdjeva MA, Hristova DR, Vasileva TV, Zahariev ZI (2011) Clinical and laboratory study of pro-inflammatory and antiinflammatory cytokines in women with multiple sclerosis. Folia Med (Plovdiv) 53(2):29–35Google Scholar
  133. Tsai HH, Frost E, To V, Robinson S, Ffrench-Constant C, Geertman R, Ransohoff RM, Miller RH (2002) The chemokine receptor CXCR2 controls positioning of oligodendrocyte precursors in developing spinal cord by arresting their migration. Cell 110(3):373–383 (S0092867402008383 [pii])PubMedCrossRefGoogle Scholar
  134. Tsunoda I, Fujinami RS (2002) Inside-Out versus Outside-In models for virus induced demyelination: axonal damage triggering demyelination. Springer Semin Immunopathol 24(2):105–125. doi: 10.1007/s00281-002-0105-z PubMedCrossRefGoogle Scholar
  135. Tsunoda I, Kuang LQ, Libbey JE, Fujinami RS (2003) Axonal injury heralds virus-induced demyelination. Am J Pathol 162(4):1259–1269 (S0002-9440(10)63922-3 [pii] 10.1016/S0002-9440(10)63922-3)PubMedPubMedCentralCrossRefGoogle Scholar
  136. Uzawa A, Mori M, Sato Y, Hayakawa S, Masuda S, Taniguchi J, Kuwabara S (2010) Cytokine and chemokines profiles in neuromyelitis optica: significance of interleukin-6. Mult Scler 16(12):1443–52. doi: 10.1177/1352458510379247 Google Scholar
  137. van Riemsdijk IC, Baan CC, Loonen EH, Knoop CJ, Navarro Betonico G, Niesters HG, Zietse R, Weimar W (2001) T cells activate the tumor necrosis factor-alpha system during hemodialysis, resulting in tachyphylaxis. Kidney Int 59(3):883–892 (kid571 [pii] 10.1046/j.1523-1755.2001.059003883.x)PubMedCrossRefGoogle Scholar
  138. Varvel NH, Grathwohl SA, Baumann F, Liebig C, Bosch A, Brawek B, Thal DR, Charo IF, Heppner FL, Aguzzi A, Garaschuk O, Ransohoff RM, Jucker M (2012) Microglial repopulation model reveals a robust homeostatic process for replacing CNS myeloid cells. Proc Natl Acad Sci USA 109(44):18150–18155 (10.1073/pnas.12101501091210150109 [pii])PubMedPubMedCentralCrossRefGoogle Scholar
  139. Veenstra M, Ransohoff RM (2012) Chemokine receptor CXCR2: physiology regulator and neuroinflammation controller? J Neuroimmunol 246(1–2):1–9 (10.1016/j.jneuroim.2012.02.016S0165-5728(12)00064-1 [pii])PubMedPubMedCentralCrossRefGoogle Scholar
  140. Vitkovic L, Konsman JP, Bockaert J, Dantzer R, Homburger V, Jacque C (2000) Cytokine signals propagate through the brain. Mol Psychiatry 5(6):604–615PubMedCrossRefGoogle Scholar
  141. Wagner JA (1996) Is IL-6 both a cytokine and a neurotrophic factor? J Exp Med 183(6):2417–2419PubMedCrossRefGoogle Scholar
  142. Waxman SG (1998) Demyelinating diseases–new pathological insights, new therapeutic targets. N Engl J Med 338(5):323–325. doi: 10.1056/NEJM199801293380610 PubMedGoogle Scholar
  143. Wilkins A, Chandran S, Compston A (2001) A role for oligodendrocyte-derived IGF-1 in trophic support of cortical neurons. Glia 36(1):48–57 (10.1002/glia.1094 [pii])PubMedCrossRefGoogle Scholar
  144. Wilson EH, Weninger W, Hunter CA (2010) Trafficking of immune cells in the central nervous system. J Clin Invest 120(5):1368–1379 (10.1172/JCI4191141911 [pii])PubMedPubMedCentralCrossRefGoogle Scholar
  145. Wolswijk G (1998) Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J Neurosci 18(2):601–609PubMedGoogle Scholar
  146. Xia M, Hyman BT (2002) GROalpha/KC, a chemokine receptor CXCR2 ligand, can be a potent trigger for neuronal ERK1/2 and PI-3 kinase pathways and for tau hyperphosphorylation-a role in Alzheimer’s disease? J Neuroimmunol 122(1–2):55–64 (S0165572801004635 [pii])PubMedCrossRefGoogle Scholar
  147. Ysrraelit MC, Gaitan MI, Lopez AS, Correale J (2008) Impaired hypothalamic-pituitary-adrenal axis activity in patients with multiple sclerosis. Neurology 71(24):1948–1954 (10.1212/01.wnl.0000336918.32695.6b 71/24/1948 [pii])PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y NeurocienciasUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Instituto de Ciencias Básicas y Medicina ExperimentalInstituto Universitario del Hospital ItalianoBuenos AiresArgentina

Personalised recommendations