Skip to main content

Introduction to Antibiotics

  • Chapter
  • First Online:

Abstract

This chapter is an introduction to antibiotics. Topics discussed are definition of antibiotics, characteristics of an ideal antibiotic, history of antibiotics, discovery of the first antibiotics, penicillin, gramicidin, streptomycin, chloramphenicol, tetracycline, etc. Background biochemistry information needed for understanding mechanisms of action of antibiotics is presented. This includes brief discussions on enzymes, inhibitors, and thermodynamics of metabolic pathways.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. FDA (2012) Guidance for industry #209. The judicious use of medically important antimicrobial drugs in food-producing animals. http://www.fda.gov/downloads/AnimalVeterinary/GuidanceComplianceEnforcement/GuidanceforIndustry/UCM216936.pdf

    Google Scholar 

  2. Benharroch D, Osyntsov L (2012) Infectious diseases are analogous with cancer. Hypothesis and implications. J Cancer Educ 3:117–121

    Article  Google Scholar 

  3. Muehlenbachs A, Bhatnagar J, Agudelo CA, Hidron A, Eberhard ML, Mathison BA, Frace MA, Ito A, Metcalfe MG, Rollin DC, Visvesvara GS, Pham CD, Jones TL, Greer PW, Vélez Hoyos A, Olson PD, Diazgranados LR, Zaki SR (2015) Malignant transformation of Hymenolepis nana in a human host. N Engl J Med 373:1845–52

    Article  CAS  Google Scholar 

  4. Wood HG, Rusoff II (1945) The protective action of Trypan Red against infection by a neurotropic virus. J Exp Med 82:297–309

    Article  CAS  Google Scholar 

  5. Burke ET (1925) The arseno-therapy of syphilis; stovarsol, and tryparsamide. Br J Vener Dis 1:321–338

    CAS  Google Scholar 

  6. Breinl A, Todd JL (1907) Atoxyl in the treatment of trypanosomiasis. Br Med J 1:132–135

    Article  CAS  Google Scholar 

  7. World Health Organization (2010). Guidelines for the treatment of malaria. 2nd edn

    Google Scholar 

  8. von Freudenreich E (1888) De l’antagonisme et de l'immunit6, qu'il conf6re au milieu de culture. Ann Inst Pasteur 2:200

    Google Scholar 

  9. Vedder EB (1914) Origin and present status of the emetin treatment of amebic dysentery. J Am Med Assoc LXII(7) 501–506

    Google Scholar 

  10. Franklin TJ, Snow GA (1989) Biochemistry of antimicrobial action, 4th edn. Chapman and Hall, London

    Book  Google Scholar 

  11. Benveniste R, Davies J (1973) Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. Proc Natl Acad Sci U S A 70:2276–2280

    Article  CAS  Google Scholar 

  12. Hopwood DA (2007) How do antibiotic-producing bacteria ensure their self-resistance before antibiotic biosynthesis incapacitates them? Mol Microbiol 63:937–940

    Article  CAS  Google Scholar 

  13. Peterson RM, Huang T, Rudolf JD, Smanski MJ, Shen B (2014) Mechanisms of self-resistance in the platensimycin and platencin producing Streptomyces platensis MA7327 and MA7339 strains. Chem Biol 21:389–397

    Article  CAS  Google Scholar 

  14. Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Till F, Schäberle TF, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman VA, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K (2015) A new antibiotic kills pathogens without detectable resistance Nature. doi: 10.1038/nature14098

    Google Scholar 

  15. Fleming A (1945) Penicillin., Nobel Lecture, www.nobelprize.org

    Google Scholar 

  16. Dubos RJ (1939) Studies on a bactericidal agent extracted from a soil Bacillus. I Preparation of the agent Its activity in vitro. J Exp Med 70:1–10

    Article  CAS  Google Scholar 

  17. Dubos RJ (1939) Studies on a bactericidal agent extracted from a soil Bacillus. II Protective effect of the bactericidal agent against experimental Pneumococcus infections in mice. J Exp Med 70:11–17

    Article  CAS  Google Scholar 

  18. Acar J (1997) Broad- and narrow-spectrum antibiotics: an unhelpful categorization. Clin Microbiol Infect 3:395–396

    Article  Google Scholar 

  19. Appelbaum E, Leff WA (1948) Occurrence of superinfections during antibiotic therapy. J Am Med Assoc 138:119–121

    Article  Google Scholar 

  20. Dagan R, Leibovitz E, Cheletz G, Leiberman A, Porat N (2001) Antibiotic treatment in acute otitis media promotes superinfection with resistant Streptococcus pneumoniae carried before initiation of treatment. J Infect Dis 183:880–886

    Article  CAS  Google Scholar 

  21. Duggar BM (1948) Aureomycin: a product of the continuing search for new antibiotics. Ann N Y Acad Sci 51:177–181

    Article  CAS  Google Scholar 

  22. Sengupta D, Sangu K, Chattopadhyay MK (2012) Unsung heroes in the history of science. Sci Report 49:31–34

    Google Scholar 

  23. Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130:797–810

    Article  CAS  Google Scholar 

  24. Kohanski MA, Dwyer DJ, Wierzbowski J, Cottarel G, Collins JJ (2008) Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. Cell 135:679–690

    Article  CAS  Google Scholar 

  25. Karen I, Wu Y, Inocencio J, Mulcahy LR, Lewis K (2013) Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science 339:1213–1216

    Article  Google Scholar 

  26. Bhattacharjee MK, Snell EE (1990) Pyridoxal 5′-phosphate-dependent histidine decarboxylase: mechanism of inactivation by α-fluoromethylhistidine. J Biol Chem 265:6664–6668

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bhattacharjee, M.K. (2016). Introduction to Antibiotics. In: Chemistry of Antibiotics and Related Drugs. Springer, Cham. https://doi.org/10.1007/978-3-319-40746-3_1

Download citation

Publish with us

Policies and ethics