Skip to main content

Minimal Networks: A Review

  • Chapter
  • First Online:
Advances in Dynamical Systems and Control

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 69))

Abstract

Minimal Networks Theory is a branch of mathematics that goes back to 17th century and unites ideas and methods of metric, differential, and combinatorial geometry and optimization theory. It is still studied intensively, due to many important applications such as transportation problem, chip design, evolution theory, molecular biology, etc. In this review we point out several significant directions of the Theory. We also state some open problems which solution seems to be crucial for the further development of the Theory. Minimal Networks can be considered as one-dimensional minimal surfaces. The simplest example of such a network is a shortest curve or, more generally, a geodesic. The first ones are global minima of the length functional considered on the curves connecting fixed boundary points. The second ones are the curves such that each sufficiently small part of them is a shortest curve. A natural generalization of the problem appears, if the boundary consists of three and more points, and additional branching points are permitted. Steiner minimal trees are analogues of the shortest curves, and locally minimal networks are generalizations of geodesics. We also include some results concerning so-called minimal fillings and minimal networks in the spaces of compacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Let the one that did not appreciate this method, solve the following problem: for given three points find the fourth one such that the total lengths of the three segments connecting it with the given three points takes a minimal value.

References

  1. Fermat de P., Tannery, H. (eds.): OeuPres, vol. 1, Paris 1891, Supplement: Paris 1922, p. 153 (1643)

    Google Scholar 

  2. Chanderjit B.: Limitations To Algorithm Solvability: Galois Methods and Models of Computation, Computer Science Technical Reports, Paper 486 (1986) http://docs.lib.purdue.edu/cstech/486

  3. Harary, F.: Graph Theory. Addison-Wesley, MA (1969)

    MATH  Google Scholar 

  4. Ivanov, A.O., Tuzhilin, A.A.: Minimal Spanning Trees on Infinite Sets. Fund. i Prikl. Matem. 20(2), 89–103 (2015). (in Russian, English translation to appear in J. of Math. Sci., 2016)

    MathSciNet  Google Scholar 

  5. Ivanov, A.O., Nikonov, I.M., Tuzhilin, A.A.: Sets admitting connection by graphs of finite length. Matem. Sbornik 196(6), 71–110 (2005). (Sbornik: Math., 196 (6), pp. 845–884)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burago D., Burago Yu., and Ivanov S.: A Course in Metric Geometry, Graduate Studies in Math., 33, A.M.S., Providence, RI (2001)

    Google Scholar 

  7. Gergonne, J.D.: Solutions purement gèomètriques des problèmes de minimis proposès aux pages 196, 232 et 292 de ce volume, et de divers autres problèmes analogues. Annales de Mathèmatiques pures et appliquèes 1, 375–384 (1810)

    Google Scholar 

  8. Melzak, Z.A.: On the problem of Steiner. Canad. Math. Bull. 4, 143–148 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bopp, K.: Über das kürzeste Verbindungssystem zwischen vier Punkten. Universität Göttingen, PhDthesis (1879)

    Google Scholar 

  10. Jarnik, V., Kössler, M.: O minimalnich grafeth obeahujiicich n danijch bodu. Cas. Pest. Mat. a. Fys. 63, 223–235 (1934)

    Google Scholar 

  11. Brazil, M., Graham, R.L., Thomas, D.A., Zachariasen, M.: On the history of the euclidean Steiner tree problem. Arch. Hist. Exact Sci. pp. 1–30 (2013)

    Google Scholar 

  12. Courant, R., Robbins, G.: What Is Mathematics?. Oxford University Press, London (1941)

    MATH  Google Scholar 

  13. Ivanov, A.O., Tuzhilin, A.A.: Extreme Networks Theory. In-t Komp. Issl, Moscow, Izhevsk (2003). [in Russian]

    Google Scholar 

  14. Ivanov, A.O., Tuzhilin, A.A.: Geometry of minimal networks and the one-dimensional plateau problem. Uspekhi Matem. Nauk 47(2), 53–115 (1992). (Russian Math. Surv., 47 (2), pp. 59–131 (1992))

    MathSciNet  MATH  Google Scholar 

  15. Ivanov, A.O., Tuzhilin, A.A.: Branching geodesics in normed spaces. Izv. RAN, Ser. Matem. 66(5), 33–82 (2002). (Izvestiya: Math., 66 (5) pp. 905–948 (2002))

    Article  MathSciNet  MATH  Google Scholar 

  16. Ivanov, A.O., Van Hong, L., Tuzhilin, A.A.: Nontrivial critical networks. Singularities of lagrangians and a criterion for criticality. Matem. Zametki 69(4), 566–580 (2001). (Math. Notes, 69 (4), pp. 514–526 (2001))

    Article  MathSciNet  MATH  Google Scholar 

  17. Swanepoel, K.: The local steiner problem in normed planes. Networks 36(2), 104–113 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Il’yutko, D.P.: Locally minimal trees in \(n\)-normed spaces. Matem. Zametki 74(5), 656–668 (2003). (Math. Notes, 74 (5), 619–629 (2003))

    Article  MathSciNet  MATH  Google Scholar 

  19. Il’yutko, D.P.: Branching extremals of the functional of \( \lambda \)-normed length. Matem. Sbornik 197(5), 75–98 (2006). (Sbornik: Math., 197 (5), 705–726 ( 2006))

    Article  MathSciNet  Google Scholar 

  20. Il’yutko, D.P.: Geometry of extreme networks in \(\lambda \)-geometry Vestnik MGU. Math., Mech. 1(4), 52–54 (2005). (Moscow Univ. Math. Bull., 60 (4) pp. 39–52 (2005))

    MathSciNet  Google Scholar 

  21. Sankoff, D.: Minimal mutation trees of sequences. SIAM J. Appl. Math. 28, 35–42 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ivanov, A.O., Tuzhilin, A.A.: One-dimensional Gromov minimal filling problem. Matem. Sbornik 203(5), 65–118 (2012). (Sbornik: Math., 203 (5), pp. 677–726 (2012))

    Google Scholar 

  23. Gromov, M.: Filling Riemannian manifolds. J. Diff. Geom. 18(1), 1–147 (1983)

    MathSciNet  MATH  Google Scholar 

  24. Cormen, Th.H., Leiserson, Ch.E., Rivest, R.L., Stein, C.: Introduction To Algorithms, 3rd edn. MIT Press, Cambridge (2009)

    Google Scholar 

  25. Gilbert, E.N., Pollak, H.O.: Steiner minimal trees. SIAM J. Appl. Math. 16(1), 1–29 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ivanov, A.O., S’edina, O.A., Tuzhilin, A.A.: The structure of minimal Steiner trees in the neighborhoods of the lunes of their edges. Matem. Zametki 91(3), 352–370 (2012). (Math. Notes, 91 (3), pp. 339–353 (2012))

    Article  MathSciNet  Google Scholar 

  27. Ivanov, A.O., Tuzhilin, A.A.: The twist number of planar linear trees. Matem. Sbornik 187(8), 41–92 (1996). (Sbornik: Math., 187 (8), pp. 1149–1195)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ivanov, A.O.: The geometry of plane locally minimal binary trees. Matem. Sbornik 186(9), 45–76 (1995). (Sbornik: Math., 186 (9), pp. 1271–1301 (1995))

    MathSciNet  Google Scholar 

  29. Ivanov, A.O., Tuzhilin, A.A.: Minimal Surfaces. In: Fomenko, A. (ed.) The Steiner Problem for Convex Boundaries, General Case. Advances in Soviet Mathematics, pp. 15–92. American Mathematical Society, Providence (1993)

    Google Scholar 

  30. Ivanov, A.O., Tuzhilin, A.A.: Minimal Networks. Steiner Problem and Its Generalizations. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  31. Ivanov, A.O., Tuzhilin, A.A.: Branching Geodesics. Geometry of Locally Minimal Networks. Russian Math. and Sci. Researches, vol. 5. Edwin–Mellen Press, Lewiston (1999). [in Russian]

    Google Scholar 

  32. Ivanov, A.O., Tuzhilin, A.A.: The Steiner problem in the plane or in plane minimal nets. Matem. Sbornik 182(12), 1813–1844 (1991). (Math. of the USSR–Sbornik, 74 (2), pp. 555–582 (1993))

    MATH  Google Scholar 

  33. Eremin, AYu.: A formula for the weight of a minimal filling of a finite metric space. Matem. Sbornik 204(9), 51–72 (2013). (Sbornik: Math., 204 (9), pp. 1285–1306 (2013))

    Article  MathSciNet  MATH  Google Scholar 

  34. Zaretskij, K.A.: Construction of a tree from the collection of distances between suspending vertices. Uspekhi Matem. Nauk 20(6), 90–92 (1965). [in Russian]

    MATH  Google Scholar 

  35. Simões-Pereira, J.M.S.: A note on the tree realizability of a distance matrix. J. Comb. Theory 6, 303–310 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  36. Smolenskij, E.A.: About a linear denotation of graphs. Zh. Vychisl. Mat. Mat. Fiz. 2(2), 371–372 (1962)

    Google Scholar 

  37. Hakimi, S.L., Yau, S.S.: Distance matrix of a graph and its realizability. Quart. Appl. Math. 12, 305–317 (1975)

    MathSciNet  MATH  Google Scholar 

  38. Rubleva, O.V.: The additivity criterion for finite metric spaces and minimal fillings, Vestnik MGU. Matem. Mech. 1(2), 8–11 (2012). (Moscow Univ. Math. Bull., 67 (2), pp. 52–54 (2012))

    MathSciNet  MATH  Google Scholar 

  39. Ovsyannikov, Z.N.: Pseudo-additive Metric Spaces and Minimal Fillings, Diploma Thesis. Mech. Math, MGU (2013)

    Google Scholar 

  40. Du, D.Z., Hwang, F.K., Weng, J.F.: Steiner minimal trees for regular polygons. Discrete Comput. geom. 2, 65–84 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  41. Du, D.Z., Hwang, F.K., Weng, J.F.: Steiner minimal trees on zig-zag lines. Trans. Am. Math. Soc. 278(1), 149–156 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  42. Chung, F.R.K., Graham, R.L.: Steiner trees for ladders. Ann. Discr. Math. (2), 173–200 (1978)

    Google Scholar 

  43. Du, D.Z., Hwang, F.K., Chao, S.C.: Steiner minimal tree for points on a circle. Proc. Am. Math. Soc. 95(4), 613–618 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  44. Rubinstein, J.H., Thomas, D.A.: Graham’s problem on shortest networks for points on a circle. Algorithmica 7, 193–218 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  45. Du, D.Z., Hwang, F.K.: Steiner minimal trees on chinese checkerboards. Math. Mag. 64(5), 332–339 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  46. Chung, F.R.K., Gardner, M., Graham, R.L.: Steiner trees on a checkboard. Math. Mag. 62(2), 83–96 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  47. Ivanov, A.O., Tuzhilin, A.A.: Uniqueness of Steiner minimal trees on boundaries in general position. Matem. Sbornik 197(9), 55–90 (2006). (Sbornik: Math., 197 (9), pp. 1309–1340 (2006))

    Article  MathSciNet  MATH  Google Scholar 

  48. Ivanov, A.O., Tuzhilin, A.A.: Stabilization of locally minimal trees. Matem. Zametki 86(4), 512–524 (2009). (Math. Notes, 86 (4), pp. 483–492 (2009))

    Article  MathSciNet  MATH  Google Scholar 

  49. Ivanov, A.O., Tuzhilin, A.A.: Minimal Surfaces. In: Fomenko, A. (ed.) The Steiner Problem for Convex Boundaries, the Regular Case. Advances in Soviet Mathematics, vol. 15, pp. 93–131

    Google Scholar 

  50. Tuzhilin, A.A.: Minimal binary trees with regular boundary: the case of skeletons with four ends. Matem. Sbornik 187(4), 117–159 (1996). (Sbornik: Math., 187 (4), pp. 581–622, (1996))

    Article  MathSciNet  MATH  Google Scholar 

  51. Tuzhilin, A.A.: Minimal binary trees with a regular boundary: the case of skeletons with five endpoints. Matem. Zametki 61(6), 906–921 (1997). (Math. Notes, 61 (6), pp. 758–769 (1997))

    Article  MathSciNet  MATH  Google Scholar 

  52. Tuzhilin, A.A.: Complete classification of locally minimal binary trees with a regular boundary whose dual triangulations are skeletons. Fundam. Prikl. Mat. 2(2), 511–562 (1996). [in Russian]

    MathSciNet  MATH  Google Scholar 

  53. Ivanov A.O., Tuzhilin A.A.: Planar Local Minimal Binary Trees with Convex, Quasiregular, and Regular Boundaries, Sonderforschungsbereich 256 Preprint (1997)

    Google Scholar 

  54. Fomenko, A.T.: Topological Variational Problems. Izd-vo MGU, Moscow,1984. Gordon and Breach Science Publishers, New York (1990)

    Book  MATH  Google Scholar 

  55. Heppes, A.: Isogonal Spherische Netze. Ann. Univ. Sci., Budapest, Sect. Math. 7, 4–48 (1964)

    MathSciNet  Google Scholar 

  56. Ivanov, A.O., Ptitsyna, I.V., Tuzhilin, A.A.: Classification of closed minimal networks on flat two-dimensional tori. Matem. Sbornik 183(12), 3–44 (1992). (Sbornik. Math., 77 (2), pp. 391–425 (1994))

    MATH  Google Scholar 

  57. Ptitsyna, I.V.: Classification of closed minimal networks on flat klein bottles, Vestnik MGU. Ser. Matem. Mech. (2), 15–22 (1995). (Moscow Univ. Math. Bull., 50 (2), pp. 13–19 (1995))

    Google Scholar 

  58. Ptitsyna, I.V.: Classification of closed minimal networks on tetrahedra. Matem. Sbornik 185(5), 119–138 (1994). (Sbornik. Math., 82 (1), pp. 101–116 (1995))

    MATH  Google Scholar 

  59. Strelkova, N.P.: Realization of plane graphs as closed locally minimal nets on convex polyhedra. Dokl. RAN 435(1), 1–3 (2010). (Doklady Math., 82 (3), pp. 939–941 (2010))

    MATH  Google Scholar 

  60. Strelkova, N.P.: Closed locally minimal networks on surfaces of convex polyhedra. Model. Anal. Inf. Sist. 20(5), 117–147 (2013). [in Russian]

    Google Scholar 

  61. Alexandrov, A.D.: Convex Polyhedra. Gos. Izd-vo Tekh.–Teor. Liter., Moscow–Leningrad, 1950. Springer, Berlin (2005)

    MATH  Google Scholar 

  62. Strelkova, N.P.: Closed locally minimal nets on tetrahedra. Matem. Sbornik 202(1), 141–160 (2011). (Sbornik: Math., 202 (1), pp. 135–153 (2011))

    Article  MathSciNet  MATH  Google Scholar 

  63. Maxwell J.C.: Cambridge Philos. Mag. (1864)

    Google Scholar 

  64. Maxwell J.C.: Trans. Roy. Soc. vol. 26, Edinburgh (1869)

    Google Scholar 

  65. Ivanov, A.O., Tuzhilin, A.A.: Generalized Maxwell formula for the length of a minimal tree with a given topology, Vestnik MGU. Ser. Matem. Mech. 1(3), 7–14 (2010). (Moscow Univ. Math. Bull., 65 (3), pp. 100–106 (2010))

    MathSciNet  Google Scholar 

  66. Bannikova, A.G., Ilyutko, D.P., Nikonov, I.M.: The length of an extremal network in a normed space: Maxwell formula. Sovrem. Matem. Fundam. Napravl. 51, 5–20 (2016). (J. of Math. Sci., 214 (5), pp. 593–608 (2016))

    MATH  Google Scholar 

  67. Ivanov, A.O., Ovsyannikov, Z.N., Strelkova, N.P., Tuzhilin, A.A.: One-dimensional minimal fillings with negative edge weights. Vestnik MGU, Ser. Matem. Mech. 1(5), 3–8 (2012). (Moscow Univ. Math. Bull., 67 (5), pp. 189–194 (2012))

    MathSciNet  MATH  Google Scholar 

  68. Pakhomova, A.S.: The estimates for Steiner subratio and Steiner–Gromov ratio. Vestnik MGU, Ser. Mat. Mech. (1), 17–25 (2014). (Moscow Univ. Math. Bull., 69 (1), pp. 16–23 (2014))

    Google Scholar 

  69. Hwang, F.K.: On Steiner minimal trees with rectilinear distance. SIAM J. Appl. Math. 30, 104–114 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  70. Innami, N., Kim, B.H.: Steiner ratio for hyperbolic surfaces. Proc. Jpn. Acad. 82, 77–79 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  71. Ivanov, A.O., Tuzhilin, A.A.: Steiner ratio. the state of the art. Math. Quest. Cybern. 11, 27–48 (2002)

    MathSciNet  MATH  Google Scholar 

  72. Du, D.-Z., Hwang, F.K.: A proof of the Gilbert–Pollak conjecture on the Steiner ratio. Algorithmica 7, 121–135 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  73. Innami, N., Kim, B.H., Mashiko, Y., Shiohama, K.: The Steiner ratio Gilbert–Pollak conjecture may still be open. Algorithmica 57(4), 869–872 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  74. Ivanov, A.O., Tuzhilin, A.A.: The Steiner ratio Gilbert–Pollak conjecture is still open. Clarification statement. Algorithmica 62(1–2), 630–632 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  75. Ivanov, A.O., Tuzhilin, A.A.: Branched coverings and steiner ratio. Int. Trans. Op. Res. 2, 1–8 (2015)

    Google Scholar 

  76. Ivanov, A.O., Tuzhilin, A.A., Cieslik, D.: Steiner Ratio for Manifolds. Matem. Zametki 74(3), 387–395 (2003). (Math. Notes, 74 (3), pp. 367–374 (2003))

    Article  MathSciNet  MATH  Google Scholar 

  77. Cieslik, D.: The Steiner Ratio of Metric Spaces (Report. http://www.math-inf.uni-greifswald.de/mathe/images/Boldt/cieslik-steiner-neu.pdf)

  78. Ivanov, A.O., Tuzhilin, A.A.: Discrete Geometry and Algebraic Combinatorics. In: Barg, A., Musin, O. (eds.) Minimal Fillings of Finite Metric Spaces: The State of the Art. Contemporary Mathematics, vol. 625, pp. 9–35. AMS, Providence (2014)

    Google Scholar 

  79. Ivanov A.O., Nikolaeva N.K., Tuzhilin A.A.: The Gromov–Hausdorff Metric on the Space of Compact Metric Spaces is Strictly Intrinsic, arXiv e-prints, arXiv:1504.03830 (2015)

  80. Ivanov A.O., Iliadis S., Tuzhilin A.A.: Realizations of Gromov–Hausdorff Distance, arXiv e-prints, arXiv:1603.08850, (2016)

  81. Chowdhury S., Memoli F.: Constructing Geodesics on the Space of Compact Metric Spaces, arXiv e-prints, arXiv:1603.02385 (2016)

  82. http://mathoverflow.net/questions/135184/for-which-metric-spaces-is-gromov-hausdorff-distance-actually-achieved?rq=1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey A. Tuzhilin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ivanov, A.O., Tuzhilin, A.A. (2016). Minimal Networks: A Review. In: Sadovnichiy, V., Zgurovsky, M. (eds) Advances in Dynamical Systems and Control. Studies in Systems, Decision and Control, vol 69. Springer, Cham. https://doi.org/10.1007/978-3-319-40673-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40673-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40672-5

  • Online ISBN: 978-3-319-40673-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics