Skip to main content

Billiard Systems as the Models for the Rigid Body Dynamics

  • Chapter
  • First Online:
Advances in Dynamical Systems and Control

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 69))

Abstract

Description of the rigid body dynamics is a complex problem, which goes back to Euler and Lagrange. These systems are described in the six-dimensional phase space and have two integrals the energy integral and the momentum integral. Of particular interest are the cases of rigid body dynamics, where there exists the additional integral, and where the Liouville integrability can be established. Because many of such a systems are difficult to describe, the next step in their analysis is the calculation of invariants for integrable systems, namely, the so called Fomenko–Zieschang molecules, which allow us to describe such a systems in the simple terms, and also allow us to set the Liouville equivalence between different integrable systems. Billiard systems describe the motion of the material point on a plane domain, bounded by a closed curve. The phase space is the four-dimensional manifold. Billiard systems can be integrable for a suitable choice of the boundary, for example, when the boundary consists of the arcs of the confocal ellipses, hyperbolas and parabolas. Since such a billiard systems are Liouville integrable, they are classified by the Fomenko–Zieschang invariants. In this article, we simulate many cases of motion of a rigid body in 3-space by more simple billiard systems. Namely, we set the Liouville equivalence between different systems by comparing the Fomenko–Zieschang invariants for the rigid body dynamics and for the billiard systems. For example, the Euler case can be simulated by the billiards for all values of energy integral. For many values of energy, such billard simulation is done for the systems of the Lagrange top and Kovalevskaya top, then for the Zhukovskii gyrostat, for the systems by Goryachev–Chaplygin–Sretenskii, Clebsch, Sokolov, as well as expanding the classical Kovalevskaya top Kovalevskaya–Yahia case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fomenko, A.T.: The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability. Math. USSR Izvestija 29(3), 629–658 (1987)

    Google Scholar 

  2. Brailov, A.V., Fomenko, A.T.: The topology of integral submanifolds of completely integrable Hamiltonian systems. Math. USSR-Sb. 62(2), 373–383 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Matveev, S.V., Fomenko, A.T.: Constant energy surfaces of Hamiltonian systems, enumeration of three-dimensional manifolds in increasing order of complexity, and computation of volumes of closed hyperbolic manifolds. -. Russ. Math. Surv. 43(1), 3–24 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fomenko, A.T., Zieschang H.: On typical topological properties of integrable Hamiltonian systems. USSR-Izv. 32(2), 385–412 (1989)

    Google Scholar 

  5. Fomenko, A.T.: Topological invariants of Hamiltonian systems that are integrable in the sense of Liouville functional. Anal. Appl. 22(4), 286–296 (1988)

    MathSciNet  MATH  Google Scholar 

  6. Fomenko, A.T.: Symplectic Geometry. – Gordon and Breach. Advanced Studies in Mathematics. vol. 5 (1988)

    Google Scholar 

  7. Bolsinov, A.V., Fomenko, A.T.: The geodesic flow of an ellipsoid is orbit ally equivalent to the Euler integrable case in the dynamics of a rigid body. Dokl. Akad. Nauk SSSB. 339(3), 293–296 (1994)

    MATH  Google Scholar 

  8. Bolsinov, A.V., Fomenko, A.T.: Orbital classification of the geodesic flows on two- dimensional ellipsoids. The Jacobi problem is orbitally equivalent to the integrable Euler case in rigid body dynamics. Funkts. Analiz i ego Prilozh. 29(3), 1–15 (1995)

    Google Scholar 

  9. Bolsinov, A.V., Fomenko, A.T.: Integrable Hamiltonian Systems: Geometry, Topology, Classification, 1, 2. Regulyarnaya i Khaolichcskaya Dinamika, Izhevsk (1999). [in Russian]

    MATH  Google Scholar 

  10. Bolsinov, A.V.: Methods of calculation of the Fomenko – Ziesehang invariant. In: Topological Classification of Integrable Systems – Advances in Soviet Mathematics, vol 6, 147–183. AMS, Providence (1991)

    Google Scholar 

  11. Arkhangelskii, YuA: Analytical Dynamics of a Rigid Body. Nauka, Moscow (1977)

    MATH  Google Scholar 

  12. Zhukovskii, N.E.: On the motion of a rigid body having cavities filled with homogeneous liquid. Zh. Russk. Fiz-Khim. Obsch. 17(6), 81–113; 7, 145–149; 8, 231–280 (1885)

    Google Scholar 

  13. Kharlamov, P.V.: Lectures on Rigid Body Dynamics. Novosibirsk State University, Novosibirsk (1965)

    MATH  Google Scholar 

  14. Kharlamov, M.P.: Topological Analysis of Integrable Problems in Rigid Body Dynamics. Leningrad University, Leningrad (1988)

    Google Scholar 

  15. Oshemkov, A.A.: Fomenko invariants for the main integrable cases of the rigid body motion equations. In: Topological Classification of Integrable Systems –Advances in Soviet Mathematics, vol. 6, 67–146. AMS, Providence (1991)

    Google Scholar 

  16. Oshemkov, A.A.: Topology of isoenergy surfaces and bifurcation diagrams for integrahle cases of rigid body dynamics on \(SO(4)\). Uspekhi Mat. Nauk 42(6), 199–200 (1987)

    MathSciNet  MATH  Google Scholar 

  17. Oshemkov, A.A.: Description of isoenergetic surfaces of some integrable Hamiltonian systems with two degrees of freedom. In: Trudy Semin. po Vektor. Tenzor. Analizu, vol. 23, 122–132. Izdatel’stvo Moskovskogo Universiteta, Moscow (1988)

    Google Scholar 

  18. Topalov, P.I.: Calculation of the fine Fomenko-Ziesehang invariant for the main integrable cases in rigid body motion. Matem. Sbornik 187(3), 143–160 (1996)

    Article  MathSciNet  Google Scholar 

  19. Orel, O.E.: The rotation function for integrable problems that are reducible to Abel equations. Trajectory classification of Goryachev–Chaplygin systems. Matem. Sbormk 186(2): 105–128 (1995)

    Google Scholar 

  20. Orel, O.E., Takahashi, S.: Trajectory classification of integrable Lagrange and Goryachev Chaplygin problems by computer analysis methods. Mat em. Sbomik 187(1), 95–112 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Morozov, P.V.: The Liouville classification of integrable systems of the Clebsch case. Sb. Math. 193(10), 1507–1533 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Morozov, P.V.: Topology of Liouville foliations in the Steklov and the Sokolov integrable cases of Kirchhoff’s equations. Sb. Math. 195(3), 369–412 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Slavina, N.S.: Topological classification of systems of Kovalevskaya-Yehia type. Sb. Math. 205(1), 101–155 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kozlov, V.V., Treshchev, D.V.: (Russian) [Billiards] A genetic introduction to the dynamics of systems with impacts. Moskov Gos University, Moscow (1991)

    MATH  Google Scholar 

  25. Dragovich, V., Radnovich, M.: Integrable Billiards, Quadrics, and Multidymensional Poncelet Porisms. Regulyarnaya i Khaolichcskaya Dinamika, Izhevsk (2010). [in Russian]

    Google Scholar 

  26. Fokicheva, V.V.: Description of singularities for billiard system bounded by confocal ellipses and hyperbolas. Moscow Univ. Math. Bull. 69(4), 148–158 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fokicheva, V.V., Fomenko, A.T.: Integrable billiards model important integrable cases of rigid body dynamics. Doklady Math. 92(3), 1–3 (2015). doi:10.7868/S0869565215320055

    Article  MathSciNet  MATH  Google Scholar 

  28. Fokicheva, V.V.: A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics. Sb. Math. 206(10), 127–176 (2015). doi:10.1070/SM2015v206nl0ABEH004502

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Victoria V. Fokicheva or Anatoly T. Fomenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fokicheva, V.V., Fomenko, A.T. (2016). Billiard Systems as the Models for the Rigid Body Dynamics. In: Sadovnichiy, V., Zgurovsky, M. (eds) Advances in Dynamical Systems and Control. Studies in Systems, Decision and Control, vol 69. Springer, Cham. https://doi.org/10.1007/978-3-319-40673-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40673-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40672-5

  • Online ISBN: 978-3-319-40673-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics