Skip to main content

Flow Control Near a Square Prism with the Help of Frontal Flat Plates

  • Chapter
  • First Online:
Advances in Dynamical Systems and Control

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 69))

Abstract

The case of two symmetrical flat plates fixed in front of a square prism for passive control of a near-body flow pattern is numerically investigated at moderate Reynolds numbers. The plates are used for generation of a pair of the frontal stable vortices which would be able suppress flow separation in the neighbor body edges. The improvement of body loads in this case is achieved by wake constriction and reducing the difference between bottom and frontal pressure. The control scheme presented was found to be sensitive to its geometrical parameters. The dynamic system analysis is attracted for studying the flow topology in the area and deriving optimum parameters of the control device. It was found that the plate length \(l\approx 0.2d\) and \(r\approx 0.16d\), where d is the prism side and r is the distance between the plate base and the prism edge, is the appropriate choice which permits reduce the prism drag approximately per 20 %. An influence of the Reynolds number on the effectiveness of the control scheme is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zdravkovich, M.M.: Review and classification of various aerodynamic and hydrodynamic means for suppressing vortex shedding. J. Wind Eng. Ind. Aerodyn. 7, 145–189 (1981)

    Article  Google Scholar 

  2. Choi, H., Jeon, W.P., Kim, J.: Control of flow over a bluff body. Ann. Rev. Fluid Mech. 40, 113–139 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Turki, S.: Numerical simulation of passive control of vortex shedding behind square cylinder using splitter plate. J. Eng. Appl. of Comp. Fl. Mech. 2(4), 514–524 (2008)

    Google Scholar 

  4. Ali, M., Doolan, C., Wheatley, V.: Aeolian tones generated by a square cylinder with a detached flat plate. AIAA J. 51(2), 291–301 (2013)

    Article  Google Scholar 

  5. Zhou, C.Y., Wang, C., Islam, S.U., Xiao, Y.Q.: Numerical study of fluid force reduction on a square cylinder using a control plate. In: Proceedings of the Nineteenth International Offshore and Polar Engineering Conference. Osaka, Japan, June 21–26. pp. 1351–1356 (2009)

    Google Scholar 

  6. Igarashi, T.: Drag reduction of a square prism by flow control using a small rod. J. Wind Eng. Ind. Aerodyn. 69–71, 141–153 (2013)

    Google Scholar 

  7. Bearman, P.W.: The effect of base bleed on the flow behind a two-dimensional model with a blunt trailing edge. J. Aeronaut. Q. 18, 207–224 (1967)

    Article  Google Scholar 

  8. Akansu, Y.E., Firhat, E.: Control of flow around a square prism by slot injection from the rear surface. J. Exp Ther. Fl. Sci. 34(7), 906–914 (2010)

    Article  Google Scholar 

  9. Firati, E., Akansu Y.E., Hacıaliogullar M.: Active control of flow around a square prism by slot injection. EPJ Web of Conference. 45 (2013)

    Google Scholar 

  10. Protas, B., Styszek, A.: Optimal rotary control of the cylinder wake in the laminar regime. J. Phys. Fl. 14(7), 2073–2087 (2002)

    Article  MATH  Google Scholar 

  11. Protas, B.: Vortex dynamics models in flow control problems. Nonlinearity 21(9), 1–54 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cortelezzi, L.: Nonlinear feedback control of the wake past a plate with a suction point on the downstream wall. J. Fluid Mech. 327, 303–324 (1996)

    Article  MATH  Google Scholar 

  13. Wu, J.Z., Vakili, A.D., Wu, J.M.: Review of the physics of enhancing vortex lift by unsteady excitation. Prog. Aerosp. Sci. 28(2), 73–131 (1991)

    Article  MATH  Google Scholar 

  14. Mhitaryan, A.M., Lukashchuk, C.A., Trubenok, B.D., Friland B.Ya.: Influence of eddy generators on aerodynamic characteristics of wing and body of rotation. Hydrodynamics of planes [in Russian]. Kiev: Naukova Dumka, pp. 254–263 (1966)

    Google Scholar 

  15. Perry, A.E., Chong, M.S.: A description of eddying motions and flow patterns using critical-point concepts. Ann. Rev. Fl. Mech. 19, 125–155 (1978)

    Article  Google Scholar 

  16. Chernyshenko, S.I.: Stabilization of trapped vortices by alternating blowing suction. Phys. Fluids 7(4), 802–807 (1995)

    Article  MATH  Google Scholar 

  17. Gorban, O.V., Gorban, I.M.: Dynamics of vortices in near-wall flows: eigenfrequencies, resonant properties, algorithms of control. AGARD Report 827, 15-11 (1998)

    Google Scholar 

  18. Gorban, I.M., Khomenko, O.V.: Dynamics of vortices in near-wall flows with irregular boundaries. In: Zgurovsky, M.Z., Sadovnichiy, V.A. (eds.) Continuous and Distributed Systems: Theory and Applications. Solid Mechanics and Its Applications, vol. 211, pp. 115–128 (2014)

    Google Scholar 

  19. Gorban, O.V., Gorban, I.M.: Vortical flow structure near a square prism: numerical model and algorithms of control [in Ukrainian]. J Appl. Hydromech. 7, 8–26 (2005)

    MathSciNet  MATH  Google Scholar 

  20. Zgurovsky, M.Z, Melnik, V.S., Kasyanov, P.O.: Evolution inclusions and variation inequalities for Earth data processing. Adv. Mech. Math. 25 (2011)

    Google Scholar 

  21. Cottet, G.-H., Koumoutsakos, P.: Vortex Methods: Theory and Practice. Cambridge University Press, London (2000)

    Book  MATH  Google Scholar 

  22. Liu, Z., Kopp, G.A.: High-resolution vortex particle simulations of flows around rectangular cylinders. J. Comp Fluids 40, 2–21 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sohankar, A., Norberg, C., Davidson, L.: Simulation of three-dimensional flow around a square cylinder at moderate Reynolds numbers. J. Phys. Fluids 11(2), 288–306 (1999)

    Article  MATH  Google Scholar 

  24. Ringleb, F.O.: Two-dimensional flow with standing vortex in ducts and diffusers. J. Fluids Eng. 82(4), 921–927 (2011)

    Google Scholar 

  25. Roshko, A.: On the drag and shedding frequency of two-dimensional bluff bodies. NASA Technical Note 3169 (1954)

    Google Scholar 

  26. Lifanov, I.K.: Method of Singular Integral Equations and Numerical Experiment [in Russian]. TOO Janus, Moscow (1995)

    MATH  Google Scholar 

  27. Danilin, A.V., Goloviznin, V.M.: Scheme KABARE in variables vorticity-velocity for numerical simulation of ideal fluid motions in two-dimensional domains [in Russian]. J. Math. Model. 24(5), 45–60 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Wu, J.C.: Numerical boundary conditions for viscous flow problems. AIAA J. 24(5), 1042–1049 (1976)

    MATH  Google Scholar 

  29. Nowakowski, A., Rocicki, J., Styczek, A.: The pressure problem in the stochastic vortex blob method. ESAIM Proceed. 1, 125–134 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Uhlman, J.S.: An integral equation formulation of the equations of motion of an incompressible fluid. NUWC-NPT Technical Report. 10086 (1992)

    Google Scholar 

  31. Dynnikova, G.Ya.: The integral formula for pressure field in the nonstationary barotropic flows of viscous fluid. J. Math. Fluid Mech. 16, 145–162 (2014)

    Google Scholar 

  32. Lamb, G.: Hydromechanics. Cambridge University Press, London (1916)

    Google Scholar 

  33. Okajima, A.: Strouhal number of rectangular cylinders. J. Fluid Mech. 123, 379–398 (1982)

    Article  Google Scholar 

  34. Okajima, A., Sugitani, K.: Strouhal number and base pressure coefficient of a rectangular cylinder. J. Trans. ASME 50, 2004–2010 (1984)

    Google Scholar 

  35. Doolan, C.J.: Flat-plate interaction with the near-wake of a square cylinder. AIAA J. 47(2), 475–478 (2009)

    Article  Google Scholar 

  36. Shimizu, M., Tanida, Y.: On the fluid forces acting on rectangular sectional cylinders. Trans. JSME 44, 2699–2706 (1978)

    Article  Google Scholar 

  37. Hwang, R.R., Sue, J.C.: Numerical simulation of shear effect on vortex shedding behind a square cylinder. Int. J. Numer. Meth. Fl. 25, 1409–1420 (1977)

    Article  MATH  Google Scholar 

  38. Inoue, O., Mori, M., Hatakeyama, N.: Aeolian tones radiated from flow past two square cylinders in a side-by-side arrangement. J. Phys. Fluids. 18 (2006)

    Google Scholar 

  39. Norberg, C.: Flow around rectangular cylinders: pressure forces and wake frequencies. J. Wind Eng. Ind. Aero. 49, 187–195 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olha V. Khomenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gorban, I.M., Khomenko, O.V. (2016). Flow Control Near a Square Prism with the Help of Frontal Flat Plates. In: Sadovnichiy, V., Zgurovsky, M. (eds) Advances in Dynamical Systems and Control. Studies in Systems, Decision and Control, vol 69. Springer, Cham. https://doi.org/10.1007/978-3-319-40673-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40673-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40672-5

  • Online ISBN: 978-3-319-40673-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics