Skip to main content

Terrestrial Laser Scanning in the Age of Sensing

  • Chapter
  • First Online:
Digital Methods and Remote Sensing in Archaeology

Abstract

For more than a decade, Terrestrial Laser Scanning (TLS) has been a primary remote sensing technique for disciplines related to archaeology, architecture, built heritage, earth science, metrology, and land survey. The increasing precision, range, and survey speed of TLS make this technology even more viable for large-scale data capturing in the Age of Sensing. This chapter reviews the state of the art of Terrestrial Laser Scanning in 2015 with the aim to assess its applications in a context of lower data capturing costs for alternative technologies, such as new commodity sensors, Image-based 3D Modeling, Unmanned Aerial Systems (UAS), optical 3D scanning, and Airborne Laser Scanning. More specifically, TLS still maintains a fundamental role in the documentation and interpretation of archaeological contexts at intrasite scale: (i) Terrestrial Laser Scanning delivers high-fidelity data of surfaces and structures of buildings as well as ultra-precise measurements of the morphology of stratigraphic layers; (ii) research in remote sensing proved that TLS point clouds can be successfully interpolated with data recorded with other instruments and techniques, such as magnetometry, Ground Penetrating Radar, Unmanned Aerial Vehicles, Image-Based Modeling, in order to generate hybrid documentation and new knowledge on natural and cultural heritage sites. Inevitably, the current advancements in TLS bring new questions. For example, how can micro-differences only visible in the point clouds change the analysis and interpretation of layers and buildings? How to improve the monitoring and conservation of a site via automated analysis of TLS data? How to enhance the mapping process of built-heritage using data segmentation or semi-automatic feature extraction of TLS point clouds? This chapter proposes a new approach to TLS based on multi-modal capture workflows, semi-automated post processing, online archiving, and online visualization and management of point clouds with the aim to open new horizons for digital archaeology, architectural survey, and heritage conservation .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • 3D Reshaper (2015). http://www.3dreshaper.com/en1/En_PointCloudProcess.htm. Accessed 3 May 2015.

  • 3DRobotics (2015). http://3drobotics.com/. Accessed 1 Mar 2015.

  • 3D Systems (2015). http://www.rapidform.com/products/xor/overview/. Accessed 25 Feb 2015.

  • Aitelkadi, K., Tahiri, D., Simonetto, E., Sebari, I., Boulaassal, H. (2014). Automatic Extraction of Facade Details of Heritage Building Using Terrestrial Laser Scanning Data. Journal of Architectural Engineering Technology, 3(133), 2.

    Google Scholar 

  • Andrews, D., Bedford, J., Blake, B., Bryan, P., Cromwell, T., Lea, R. (2009). Measured and Drwan. Techniques and practice for the metric survey of historic buildings (2nd edition). Swindon: Historic England Publishing.

    Google Scholar 

  • Autodesk Recap (2015). http://www.autodesk.com/products/recap/overview. Accessed 28 Mar 2015.

  • Behr, J., Eschler, P., Jung, Y., Zöllner, M. (2009). X3DOM: A DOM-Based HTML5/X3D Integration Model. In Proceedings of the 14th International Conference on 3D Web Technology, 127–135. ACM. http://dl.acm.org/citation.cfm?id=1559784.

    Google Scholar 

  • Berggren, Å., Dell’Unto, N., Forte, M., Haddow, S., Hodder, I., Issavi, J., Lercari, N., Mazzucato, C., Mickel, A., Taylor, J. S. (2015). Revisiting reflexive archaeology at Çatalhöyük: integrating digital and 3D technologies at the trowel’s edge. Antiquity, 89 (344), 433–448.

    Google Scholar 

  • Bryan, P., Blake, B., Bedford, J. (2009). Metric Survey Specifications for Cultural Heritage. Swindon: Historic England Publishing.

    Google Scholar 

  • Callieri, M., Dell’Unto, N., Dellepiane, M., Scopigno, R., Soderberg, B., Larsson, L. (2011). Documentation and Interpretation of an Archeological Excavation: an Experience with Dense Stereo reconstruction Tools. In Proc. of VAST The 11th International Symposium on Virtual Reality Archaeology and Cultural Heritage (pp. 33–40). Eurographics.

    Google Scholar 

  • Callieri, M., Dellepiane, M., Scopigno, R. (2015). Remote visualization and navigation of 3D models of archeological sites. In Proc. of 3D-ARCH Conference (pp. 147–154), ISPRS Archives, Vol. XL-5/W4.

    Google Scholar 

  • Campana S., Morelli G., Catanzariti G., Krishopher, S., Forte, M., Lercari, N. (2013). 4D Surveys at Çatalhöyük (Turkey): Magnetometry, sa-GPR & hr-GPR, Laserscanning. Paper presented at Space2Place, Digital Heritage International Congress 2013, Marseille, France, Oct. 28- Nov 01, 2013.

    Google Scholar 

  • Casula, G, Fais, S., Ligas, P. (2009). Experimental Application of 3-D Terrestrial Laser Scanner and Acoustic Techniques in assessing the quality of stones used in monumental structures. Int. Journ. of Microstructure and Materials Properties, 4(1), 45–56.

    Google Scholar 

  • Chien, C. H., & Aggarwal, J. K. (1986). Volume/surface octrees for the representation of three-dimensional objects. Computer Vision, Graphics, and Image Processing, 36(1), 100–113.

    Google Scholar 

  • Christofori and Bierwagen (2013). Recording cultural heritage using terrestrial laserscanning – dealing with the system, the huge datasets they create and ways to extract the necessary deliverables you can work with. Intl. Arch. Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XL, part 5/W2. XXIV. International CIPA Symposium, 2–6 Sept. 2013, Strasbourg, France.

    Google Scholar 

  • Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G. (2008). MeshLab: an Open-Source Mesh Processing Tool. In Proc. of Eurographics Italian Chapter Conference (pp. 129–136), The Eurographics Association.

    Google Scholar 

  • CloudCompare (2015). http://www.cloudcompare.org/. Accessed 30 Mar 2015.

  • CloudPro (2015). http://www.leica-geosystems.com/en/Leica-CloudPro_105688.htm. Accessed 28 Apr 2015.

  • Crutchley, S., & Crow, P. (2009). The Light Fantastic – Using airborne LiDAR in archaeological survey. Swindon: Historic England Publishing.

    Google Scholar 

  • Cyclone (2015). http://hds.leica-geosystems.com/en/Leica-Cyclone_6515.htm. Accessed 27 Apr 2015.

  • Cyclone SERVER (2016). http://hds.leica-geosystems.com/downloads123/hds/hds/cyclone/brochures-datasheet/Cyclone_SERVER_DS_en.pdf. Accessed 25 Aug 2016.

  • Dellepiane, M., Dell’Unto, N., Callieri, M., Lindgren, S., Scopigno. R. (2012). Archeological excavation monitoring using dense stereo matching techniques. J. of Cult. Herit., 14, 201–210.

    Google Scholar 

  • De Reu, J., Plets, G., Verhoeven, G., De Smedt, P., Bats, M., Cherretté, B., De Maeyer, W., Deconynck, J., Herremans, D., Laloo, P., Van Meirvenne, M., De Clercq, W. (2013). Towards a three-dimensional cost-effective registration of the archaeological heritage. Journ. of Arch. Science, 40, 1008–1121.

    Google Scholar 

  • De Reu, J., De Smedt, P., Herremans, D., Van Meirvenne, M., Laloo, P., De Clercq, W. (2014). On introducing an image-based 3D reconstruction method in archaeological excavation practice. Journ. of Arch. Science, 41, 251–262. 

    Google Scholar 

  • Doneus, M., & Neubauer, W. (2005a). 3D laser scanners on archaeological excavations. In Proceedings of the XXth International Symposium CIPA, Torino.

    Google Scholar 

  • Doneus, M., & Neubauer, W. (2005b). Laser scanners for 3D documentation of stratigraphic excavations. In M. Baltsavias, A. Gruen, L. Van Gool, M. Peteraki (Eds.), Recording, Modeling and Visualization of Cultural Heritage (pp. 193–203), Taylor & Francis.

    Google Scholar 

  • DroneDeploy (2015). https://www.dronedeploy.com/. Accessed 11 Nov 2015.

  • DJI (2015). http://www.dji.com/. Accessed 1 Mar 2015.

  • DPI8 (2015). http://dotproduct3d.com/DPI8.php. Accessed 27 April 2015.

  • Evans, A., Romeo, M., Bahrehmand, A., Agenjo, J., Blat, J. (2014). 3d graphics on the web: A survey. Computers & Graphics, 41(0), 43–61. 

    Google Scholar 

  • FARO Focus3D X330 (2015). http://www.faro.com/en-us/products/3d-surveying/faro-Focus3d/overview. Accessed 25 Feb 2015.

  • FARO Warranty department (2015). http://www.faro.com/en-us/support/faro-maintenance/warranty-maintenance-renewal. Accessed 28 Mar 2015.

  • FLIR&DJI (2015). http://dronexpert.nl/dronexpert-thermical-packages/. Accessed 25 Feb 2015.

  • Forte, M., Pescarin, S., Pietroni, E., Dell’Unto, N. (2005). The Appia antica project. In M. Forte (Ed.), Archaeological Landscapes through Digital Technologies: Proceedings of the 2nd Italy-United States Workshop. British Archaeological Report (BAR).

    Google Scholar 

  • Forte, M., Dell’unto, N., Issavi, J., Onsurez, L., Lercari, N. (2012). 3D Archaeology at Çatalhöyük. Int. Journ. of Heritage in the Digital Era, 1, 351–378.

    Google Scholar 

  • Forte, M., Dell’unto, N., Jonsson, K., Lercari, N. (2015). Interpretation Process at Çatalhöyük using 3D. In I. Hodder and A. Marciniak (Eds.), Assembling Çatalhöyük, Maney Publishing.

    Google Scholar 

  • Forte, M., Danelon, N., Biancifiori, E., Dell’Unto, N., Lercari, N. (2016). Archive Report 2015. B89 and 3D Digging Project. Çatalhöyük 2015 Archive Report. Çatalhöyük Research Project – Stanford University.

    Google Scholar 

  • Francovich, R. & Campana, S. (2005) Introduzione. Laser scanner e GPS: paesaggi archeologici e tecnologie digitali, 1: I workshop, Grosseto, 4 marzo 2005. Quaderni del Dipartimento di archeologia e storia delle arti. Sezione archeologia/Università di Siena, Edizioni All’insegna del giglio. p. 63. doi:10.1400/184085.

  • Geomagic Design, X. (2015). http://www.rapidform.com/products/xor/overview/. Accessed on 25 Aug 2016.

  • Girardeau-Montaut, D. (2011). CloudCompare-Open Source project. OpenSource Project.

    Google Scholar 

  • Grinzato, E., Bison, P.G., Marinetti, S. (2002). Monitoring of ancient buildings by the thermal method. Journ. of Cultural Heritage, 3(1), 21–29.

    Google Scholar 

  • Guidazzoli, A., Liguori, M. C., Felicori, M. (2012). Collecting, sharing, reusing geo and time-variant 3D models of the City of Bologna: An open project. In Proc. of Virtual Systems and Multimedia (VSMM) 2012 (pp. 611–614). IEEE.

    Google Scholar 

  • Guidi, G., Remondino, F., Morlando, G., Del Mastio, A., Uccheddu, F., Pelagotti, A. (2007). Performances evaluation of a low cost active sensor for cultural heritage documentation. In Proc. of VIII Conference on Optical 3D Measurement Techniques, ETH.

    Google Scholar 

  • Guidi, G., F. Remondino, M. Russo, F. Menn, and A. Rizzi. 2008. 3D Modelling of Large and Complex Site Using Multi-Sensor Integration and Multi-Resolution. Paper presented at The 9th International Symposium on Virtual Reality, Archaeology and Cultural Heritage (VAST) 2008 (pp. 85–92), 3-5 December 2008, Braga, Portugal.

    Google Scholar 

  • Helion Eucaliptus (2015). https://www.eucalyptus.com/eucalyptus-cloud. Accessed Apr 29 2015.

  • Hess, M., Meyer, D., Hoff, A., Rissolo, D., Guillermo, L. L., Kuester, F. (2014). Informing Historical Preservation with the Use of Non-destructive Diagnostic Techniques: A Case Study at Ecab, Quintana Roo, Mexico. Paper presented at International Conference EuroMed 2014 (pp. 659–668). Limassol: Springer International Publishing.

    Google Scholar 

  • HxIP (2015). http://www.leica-geosystems.com/en/HxIP-Hexagon-Imagery-Programme_106454.htm. Accessed 29 Apr 2015.

  • Intel RealSense (2015). http://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html. Accessed 25 Feb 2015.

  • Kacyra, B., Dimsdale, J., Brunkhart, M. (1999). U.S. Patent No. 5,988,862. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  • Kersten, T. P., & Lindstaedt, M. (2012). Image-based low-cost systems for automatic 3D recording and modeling of archaeological finds and objects. In Progress in cultural heritage preservation (pp. 1–10). Springer Berlin Heidelberg.

    Google Scholar 

  • Khoshelham, K. (2011). Accuracy analysis of kinect depth data. In ISPRS workshop laser scanning, 38(5), W12.

    Google Scholar 

  • Khoshelham, K., & Elberink, S. O. (2012). Accuracy and resolution of kinect depth data for indoor mapping applications. Sensors, 12(2), 1437–1454.

    Google Scholar 

  • Koller, D., Frischer, B., Humphreys, G. (2009). Research challenges for digital archives of 3D cultural heritage models. Journ. on Computing and Cultural Heritage (JOCCH), 2(3), 7.

    Google Scholar 

  • Lambers, K., H. Eisenbeiss, M. Sauerbier, D. Kupferschmidt, T. Gaisecker, T. Hanusch. (2007). Combining Photogrammetry and Laser Scanning for the Recording and Modelling of the Late Intermediate Period Site of Pinchango Alto, Palpa, Peru. Journ. of Arch. Science, 34(10), 1702–1712.

    Google Scholar 

  • Lavoie, C. and Lockett, D. (n.d.). Producing HABS/HAER/HALS Measured Drawings from Laser Scans: the Pros and Cons of Using Laser Scanning for Heritage Documentation. Heritage Documentation Programs, National Park Service. Retrieved from http://www.nps.gov/hdp/standards/laser.htm. Accessed 27 Mar 2015.

  • Leica ScanStation (2015). http://hds.leica-geosystems.com/en/Leica-ScanStation-P30-P40_106396.htm. Accessed 28 Mar 2015.

  • Leoni, C., Callieri, M., Dellepiane, M., O Donnell, D., Rosselli Del Turco, R., Scopigno, R. (2015). The Dream and the Cross: A 3D Scanning Project to Bring 3D Content in a Digital Edition. Journ. on Computing and Cultural Heritage (JOCCH), 8 (1).

    Google Scholar 

  • Lercari, N. (2010). An Open Source Approach to Cultural Heritage: Nu.M.E. Project and the Virtual Reconstruction of Bologna”. In M. Forte (Ed.), Cyber-Archaeology (pp. 125–133). Oxford, UK: Archaeopress, BAR International Series 2177.

    Google Scholar 

  • Lercari, N., Toffalori, E., Spigarolo, M., Onsurez, L. (2011, October). Virtual heritage in the cloud: new perspectives for the virtual museum of bologna. In Proceedings of the 12th International conference on Virtual Reality, Archaeology and Cultural Heritage (pp. 153–160). Eurographics Association.

    Google Scholar 

  • Lercari, N., Forte, M., Onsurez, L., Schultz, J. (2013). Multimodal Reconstruction of Landscape in Serious Games for Heritage. An insight on the creation of Fort Ross Virtual Warehouse serious game. In Proceedings of Digital Heritage International Congress 2013, Marseille, France, Oct. 28 - Nov 01, 2013.

    Google Scholar 

  • Lercari, N., Mortara, M., Forte, M. (2014). Unveiling California history through serious games: Fort Ross Virtual Warehouse. In A. De Gloria (Ed.), Lecture Notes in Computer Science: Games and Learning Alliance (pp. 236–251). Berlin: Springer.

    Google Scholar 

  • Lercari, N. & Lingle A. (2016). Çatalhöyük Digital Preservation Project – Field season 2015 Report. Çatalhöyük 2015 Archive Report. Çatalhöyük Research Project – Stanford University.

    Google Scholar 

  • Luzi, G., Monserrat, O., Crosetto, M. (2012). Real Aperture Radar interferometry as a tool for buildings vibration monitoring: Limits and potentials from an experimental study. Paper presented at 10th International Conference on Vibration Measurements by Laser and Noncontact Techniques 2012 (pp. 309–317). Ancona, Italy, 27-29 June 2012.

    Google Scholar 

  • Matterport (2015). http://matterport.com/technology/. Accessed 26 Feb 015.

  • MeshLab (2016). http://www.3d-coform.eu/index.php/tools/meshlab. Accessed 25 Aug 2016.

  • Mills, J., & Andrews, D. (2011). 3D Laser Scanning for Heritage (second edition – First Edition authors: Barber, D., Mills, J.): Advice and guidance to users on laser scanning in archaeology and architecture. Swindon: Historic England Publishing.

    Google Scholar 

  • Montuori, A., Luzi, G., Stramondo, S., Casula, G., Bignami, C., Bonali, E., Bianchi, G.M., Crosetto, M. (2014). Combined use of ground-based systems for Cultural Heritage conservation monitoring. In Geoscience and Remote Sensing Symposium (IGARSS), 2014 (pp. 4086–4089). IEEE International.

    Google Scholar 

  • Neubauer, W., Doneus, M., Studnicka, N., and Riegl, J. (2005). Combined high resolution laser scanning and photogrammetrical documentation of the pyramids at Giza. In Proceedings of CIPA XX International Symposium (pp. 470–475).

    Google Scholar 

  • Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., Zagorodnov, D. (2009, May). The eucalyptus open-source cloud-computing system. In Cluster Computing and the Grid, 2009. CCGRID09. 9th IEEE/ACM International Symposium (pp. 124–131). IEEE.

    Google Scholar 

  • Oculus Rift (2016). https://www.oculus.com/. Accessed 25 Aug 2016.

  • Pix4D (2015). https://pix4d.com/. Accessed 1 Mar 2015.

  • Pescarin, S. & Pietroni, E. (2007). La documentazione digitale: Le tecnologie integrate. In Forte, M. (Ed.), La Villa di Livia. Un Percorso di ricerca di archeologia digitale (pp. 101–110). Roma: L’Erma di Bretschneider.

    Google Scholar 

  • Photoscan (2015). http://www.agisoft.com/. Accessed 8 Nov 2015.

  • Pollefeys, M., Van Gool, L., Vergauwen, M., Cornelis, K., Verbiest, F., Tops, J. (2001). Image-based 3D acquisition of archaeological heritage and applications. Paper presented at Conference on Virtual Reality, Archeology, and Cultural Heritage 2001. ACM.

    Google Scholar 

  • Potenziani, M., Corsini, M., Callieri, M., Di Benedetto, M., Ponchio, F., Dellepiane, M., Scopigno, R. (2014). An Advanced Solution for Publishing 3D Content on the Web. In N. Proctor and R. Cherry (Eds.), Proceedings of Museums and the Web 2014, Silver Spring.

    Google Scholar 

  • Ranzuglia, G., Callieri, M., Dellepiane, M., Cignoni, P., Scopigno, R. (2012). MeshLab as a complete tool for the integration of photos and color with high resolution 3D geometry data. Paper presented at Computer Applications and Quantitative Methods in Archaeology, Southampton, UK, 26–29 March 2012. Pallas Publications - Amsterdam University Press (AUP).

    Google Scholar 

  • Rajendra, M. Y., Mehrotra, S. C., Kale, K. V., Manza, R. R., Dhumal, R. K., Nagne, A. D., Vibhute, A. D. (2014). Evaluation of partially overlapping 3d point cloud’s registration by using ICP variant and CloudCompare. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 1, 891–897.

    Google Scholar 

  • Raluca Popescu, C., & Lungu, A. (2014). Real-Time 3D Reconstruction Using a Kinect Sensor. Computer Science and Information Technology, 2(2), 95–99. doi:10.13189/csit.2014.020206.

    Google Scholar 

  • REAL (2015). http://www.real2015.com/. Accessed 24 Feb 2015.

  • Remondino, F., & Menna, F. (2008). Image-based surface measurement for close-range heritage documentation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVII. Part B5. Beijing 2008.

    Google Scholar 

  • R&D, E. D. F. TP (2011). CloudCompare (version 2.3)(GPL software).

    Google Scholar 

  • Samsung Gear VR 2016. http://www.samsung.com/global/galaxy/gear-vr/. Accessed 25 Aug 2016.

  • SCENE (2015). http://www.faro.com/en-us/products/faro-software/scene/overview#main. Accessed 25 Apr 2015.

  • SCENE WebShare 2Go (2016). http://www.faro.com/faro-3d-app-center/scene-plug-in-apps/scene-webshare-2-go. Accessed 25 Aug 2016.

  • SCENE WebShare Cloud (2016). http://www.faro.com/products/faro-software/scene-webshare-cloud/our-offer#main. Accessed 25 Aug 2016.

  • SCENE WebShare Server (2016). http://www.faro.com/faro-3d-app-center/stand-alone-apps/scene-webshare-server. Accessed 7 Nov 2015.

  • Scollar, I., & Giradeau-Montaut, D. (2012). Georeferenced orthophotos and DTMs from multiple oblique images. AARGnews, 44, 12–17.

    Google Scholar 

  • Seek Thermal (2015). http://www.thermal.com. Accessed 3 Mar 2015.

  • Sequoia (2015). http://sequoia.thinkboxsoftware.com/. Accessed on 25 Feb 2015.

  • Silvestre, I., Rodrigues, J. I., Figueiredo, M. J. G, Veiga-Pires, C.. 2013. Cave Chamber Data Modeling and 3D Web Visualization. In Proc. of the 2013 17th Int. Conf. on Inf. Vis. (IV13) (pp. 468–473). Washington, DC: IEEE Computer Society. doi:10.1109/IV.2013.103.

  • Siotto, E., Dellepiane, M., Callieri, M., Scopigno, R., Gratziu, C., Moscato, A., Burgio, L., Legnaioli, S., Lorenzetti, G., Palleschi, V. (2014). A multidisciplinary approach for the study and the virtual reconstruction of the ancient polychromy of Roman sarcophagi. Journ. of Cultural Heritage, 15.

    Google Scholar 

  • Sixense Razer Hydra (2016). http://sixense.com/razerhydra. Accessed 25 Aug 2016.

  • Smith, N.G., Cutchin, S., Kooima, R., Ainsworth, R.A., Sandin, D.J., Schulze, J., Prudhomme, A., Kuester, F., Levy, T.E. (2013). Cultural heritage omni-stereo panoramas for immersive cultural analytics—From the Nile to the Hijaz. Paper presented at 8th International Symposium on Image and Signal Processing and Analysis (ISPA). IEEE.

    Google Scholar 

  • Smith, N., Passone, L., al-Said, S., al-Farhan, M., Levy, T. E. (2014). Drones in Archaeology: Integrated Data Capture, Processing, and Dissemination in the al-Ula Valley, Saudi Arabia. Near Eastern Archaeology, 77(3), 176–181.

    Google Scholar 

  • Structure Sensor (2015). http://www.structure.io/. Accessed 25 Feb 2015.

  • Thinkbox (2015). http://sequoia.thinkboxsoftware.com/. Accessed on 6 Nov 2015.

  • TruView (2015). http://hds.leica-geosystems.com/en/Leica-TruView_63960.htm. Accessed 28 Mar 2015.

  • Vergauwen, M., & Van Gool, L. (2006). Web-based 3d reconstruction service. Machine vision and applications, 17(6), 411–426.

    Google Scholar 

  • Verhoeven, G. (2011). Taking computer vision aloft archaeological three- dimensional reconstruction from aerial photographs with Photoscan. Archaeological Prospection, 18, 67–73.

    Google Scholar 

  • Verhoeven, G., Taelman, D., Vermeulen, F. (2012). Computer vision-based orthophoto mapping of complex archaeological sites: the ancient quarry of Pitaranha (Portugal-Spain). Archaeometry, 54, 1114–1129.

    Google Scholar 

  • Visionary Cross Project (2015). http://www.visionarycross.org/. Accessed on 29 Apr 2015.

  • WebGL (2015). https://www.khronos.org/webgl/. Accessed 28 Mar 2015.

  • X3D(2015).http://www.web3d.org/sites/default/files/page/About%20Web3D%20Consortium/What_is_X3D_201206.pdf. Accessed 28 Mar 2015.

  • X3DOM (2015). http://www.x3dom.org/. Accessed 28 Mar 2015.

  • Zhang, Z. (2012). Microsoft Kinect sensor and its effect. MultiMedia, IEEE, 19(2), 4–10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Lercari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lercari, N. (2016). Terrestrial Laser Scanning in the Age of Sensing. In: Forte, M., Campana, S. (eds) Digital Methods and Remote Sensing in Archaeology. Quantitative Methods in the Humanities and Social Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-40658-9_1

Download citation

Publish with us

Policies and ethics