Temporal Logic Framework for Performance Analysis of Architectures of Systems

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9690)


This paper presents a formal mathematical framework for performance analysis (in terms of success of given tasks) of complex systems, ATLAS. This method interestingly combines temporal aspects (for the description of the complex system) and probabilities (to represent performance). The system’s task to be evaluated is described using a temporal language, the ATLAS language: the architecture of the task is decomposed into elementary functionalities and temporal operators specify their arrangement. Starting with the success probabilities of the elementary functionalities, it is then possible to compute the overall success probability of the task using mathematical formulae which are proven in this paper. The method is illustrated with a deorbitation task for a retired satellite called ENVISAT.


Probabilistic performance analysis Time-dependant systems Temporal logic 


  1. 1.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)CrossRefzbMATHGoogle Scholar
  2. 2.
    Allen, J.F.: Temporal reasoning and planning. In: Reasoning about Plans, pp. 1–67. Morgan Kaufmann Publishers Inc., San Francisco (1991)Google Scholar
  3. 3.
    Bertrand, S., Donath, T., Kervarc, R., Lancien, A., Louyot, C., Merit, S., Piernas, A., Prudhomme, S.: Probabilistic performance evaluation of tactical ballistic missile defence architectures. In: 6th International Conference on Missile Defence (2009)Google Scholar
  4. 4.
    Bertrand, S., Prudhomme, S., Merit, S., Jolly, C., Kervarc, R., Donath, T.: Space systems’ vulnerability assessment to space debris: a methodology and a program. In: 2012 IEEE Aerospace Conference, pp. 1–15. IEEE (2012)Google Scholar
  5. 5.
    Bobbio, A., Ciancamerla, E., Franceschinis, G., Gaeta, R., Minichino, M., Portinale, L.: Sequential application of heterogeneous models for the safetyanalysis of a control system: a case study. Reliab. Eng. Syst. Saf. 81, 269–280 (2003)CrossRefGoogle Scholar
  6. 6.
    Bonnal, C., Ruault, J.M., Desjean, M.C.: Active debris removal: recent progress and current trends. Acta Astronaut. 85, 51–60 (2013)CrossRefGoogle Scholar
  7. 7.
    Chan, F.K.: Spacecraft Collision Probability. Aerospace Press El Seg., CA (2008)CrossRefGoogle Scholar
  8. 8.
    Chaochen, Z., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Inf. Process. Lett. 40(5), 269–276 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Clerc, X., Retat, I.: Astrium vision on space debris removal. In: Proceeding of the 63rd International Astronautical Congress (IAC 2012), vol. 15, Napoli, Italy (2012)Google Scholar
  10. 10.
    Dhillon, B.S.: Design Reliability: Fundamentals and Applications. CRC Press, Boca Raton (1999)CrossRefGoogle Scholar
  11. 11.
    Dutuit, Y., Châtelet, E., Signoret, J.P., Thomas, P.: Dependability modelling and evaluation by using stochastic petri nets: application to two test cases. Reliab. Eng. Syst. Saf. 55(2), 117–124 (1997)CrossRefGoogle Scholar
  12. 12.
    Hansen, K.M., Ravn, A.P., Stavridou, V.: From safety analysis to software requirements. IEEE Trans. Softw. Eng. 24(7), 573–584 (1998)CrossRefGoogle Scholar
  13. 13.
    Hansen, M.R., Chaochen, Z.: Duration calculus: logical foundations. Formal Aspects Comput. 9(3), 283–330 (1997)CrossRefzbMATHGoogle Scholar
  14. 14.
    van der Heijden, M., Lucas, P.J.: A probabilistic logic of qualitative time. In: Probabilistic Problem Solving in BioMedicine, p. 69 (2011)Google Scholar
  15. 15.
    Kang, C., Golay, M.: A bayesian belief network-based advisory system for operational availability focused diagnosis of complex nuclear power systems. Expert Syst. Appl. 17(1), 21–32 (1999)CrossRefGoogle Scholar
  16. 16.
    Kervarc, R., Bertrand, S., Prudhomme, S., Elie, A., Carle, P., Donath, T.: A functional approach to the assessment of debris effect on spatial systems. In: MASCOT&ISGG 2012 (2012)Google Scholar
  17. 17.
    Kervarc, R., Bourrely, J., Quillien, C.: A generic logical-temporal performance analysis method for complex systems. Math. Comput. Simul. 81, 717–730 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lang, T., Kervarc, R., Bertrand, S., Carle, P., Donath, T., Destefanis, R., Grassi, L., Tiboldo, F., Schäfer, F., Kempf, S., et al.: Short and long term efficiencies of debris risk reduction measures: application to a european LEO mission. Adv. Space Res. 55(1), 282–296 (2015)CrossRefGoogle Scholar
  19. 19.
    Morio, J., Piet-Lahanier, H., Poirion, F., Marzat, J., Seren, C., Bertrand, S., Brucy, Q., Kervarc, R., et al.: An overview of probabilistic performance analysis methods for large scale and time-dependent systems. AerospaceLab 3(4), 1 (2012)Google Scholar
  20. 20.
    Nourelfath, M., Dutuit, Y.: A combined approach to solve the redundancy optimization problem for multi-state systems under repair policies. Reliab. Eng. Syst. Saf. 86(3), 205–213 (2004)CrossRefGoogle Scholar
  21. 21.
    Perez, E.: Vega users manual. ARIANESPACE (3), 154 (2012)Google Scholar
  22. 22.
    Perez, E.: Soyuz from the guiana space centre users manual. Technical report Arianespace (2012)Google Scholar
  23. 23.
    Schellhorn, G., Thums, A., Reif, W.: Formal fault tree semantics. In: Proceedings of the 6th World Conference on Integrated Design & Process Technology (2002)Google Scholar
  24. 24.
    Taylor, J.: Fault tree and cause consequence analysis for control software validation. Technical report (1982)Google Scholar
  25. 25.
    Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault tree handbook. Technical report, DTIC Document (1981)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.ONERA – The French Aerospace LabPalaiseauFrance

Personalised recommendations