On Functions Derived from Fuzzy Implications

  • Przemysław GrzegorzewskiEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 610)


Recently, fuzzy implications based on copulas, i.e. probabilistic implications and probabilistic S-implications, were introduced and their properties were explored. However, the reverse problem of copulas derived from fuzzy implications, suggested by Massanet et al. [11, 12], is also of interest. In the paper we consider geometric properties of those fuzzy implications that generate copulas. Moreover, we consider the reverse problem for some generalizations of copulas like quasi-copulas and semi-copulas.


Copula Fuzzy implication Probabilistic implication Spearman’s rho Diagonal section Quasi-copula Semi-copula 


  1. 1.
    Baczyński, M., Grzegorzewski, P., Mesiar, R.: Fuzzy implications based on semicopulas. In: Alonso, J.M., Bustince, H., Reformat, M. (eds.) Proceedings of the 2015 IFSA and EUSFLAT Conference, pp. 792–798. Atlantis Press (2015)Google Scholar
  2. 2.
    Baczyński, M., Grzegorzewski, P., Helbin, P., Niemyska, W.: Properties of the probabilistic implications and S-implications. Inf. Sci. 331, 2–14 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Baczyński, M., Grzegorzewski, P., Niemyska, W.: Laws of contraposition and law of importation for probabilistic implications and probabilistic s-implications. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2014, Part I. CCIS, vol. 442, pp. 158–167. Springer, Heidelberg (2014)Google Scholar
  4. 4.
    Baczyński, M., Jayaram, B.: Fuzzy Implications. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  5. 5.
    Dolati, A., Sánchez, J.F., Úbeda-Flores, M.: A copula-based family of fuzzy implication operators. Fuzzy Sets Syst. 211, 55–61 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Durante, F., Sempi, C.: Semicopulae. Kybernetika 41, 315–328 (2005)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Grzegorzewski, P.: Probabilistic implications. In: Proceedings of the EUSFLAT-2011 and LFA-2011 Conference, pp. 254–258. Atlantis Press (2011)Google Scholar
  8. 8.
    Grzegorzewski, P.: On the properties of probabilistic implications. In: Melo-Pinto, P., Couto, P., Serôdio, C., Fodor, J., De Baets, B. (eds.) Eurofuse 2011. AISC, vol. 107, pp. 67–78. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Grzegorzewski, P.: Survival implications. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds.) IPMU 2012, Part II. CCIS, vol. 298, pp. 335–344. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Grzegorzewski, P.: Probabilistic implications. Fuzzy Sets Syst. 226, 53–66 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Massanet, S., Ruiz-Aguilera, D., Torrens, J.: Defining copulas from fuzzy implication functions. In: Baczynski, M., De Baets, B., Mesiar, R. (eds.) Proceedings of the AGOP 2015 Conference, pp. 181–186 (2015)Google Scholar
  12. 12.
    Massanet, S., Ruiz-Aguilera, D., Torrens, J.: On two construction methods of copulas from fuzzy implication functions. Prog. Artif. Intell. 5, 1–14 (2016)CrossRefGoogle Scholar
  13. 13.
    Nelsen, R.B.: An Introduction to Copulas, 2nd edn. Springer, Heidelberg (2006)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Systems Research Institute, Polish Academy of SciencesWarsawPoland
  2. 2.Faculty of Mathematics and Computer ScienceWarsaw University of TechnologyWarsawPoland

Personalised recommendations