Recognition of Confusing Objects for NAO Robot

  • Thanh-Long Nguyen
  • Didier CoquinEmail author
  • Reda Boukezzoula
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 610)


Visual processing is one of the most essential tasks in robotics systems. However, it may be affected by many unfavourable factors in the operating environment which lead to imprecisions and uncertainties. Under those circumstances, we propose a multi-camera fusing method applied in a scenario of object recognition for a NAO robot. The cameras capture the same scenes at the same time, then extract feature points from the scene and give their belief about the classes of the detected objects. Dempster’s rule of combination is then used to fuse information from the cameras and provide a better decision. In order to take advantages of heterogeneous sensors fusion, we combine information from 2D and 3D cameras. The results of experiment prove the efficiency of the proposed approach.


Object recognition NAO robot Uncertainty Evidence theory Camera fusion 


  1. 1.
    Berg, A.C., Berg, T.L., Malik, J.: Shape matching and object recognition using low distortion correspondences. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 26–33. IEEE (2005)Google Scholar
  2. 2.
    Ling, H., Jacobs, D.W.: Shape classification using the inner-distance. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 286–299 (2007)CrossRefGoogle Scholar
  3. 3.
    Perner, P.: Cognitive aspects of object recognition-recognition of objects by texture. Procedia Comput. Sci. 60, 391–402 (2015)CrossRefGoogle Scholar
  4. 4.
    Arivazhagan, S., Shebiah, R.N., Nidhyanandhan, S.S., Ganesan, L.: Fruit recognition using color and texture features. J. Emerg. Trends Comput. Inf. Sci. 1(2), 90–94 (2010)Google Scholar
  5. 5.
    Galleguillos, C., Rabinovich, A., Belongie, S.: Object categorization using co-occurrence, location and appearance. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)Google Scholar
  6. 6.
    Murphy, K., Freeman, W.: Contextual models for object detection using boosted random fields. In: NIPS (2004)Google Scholar
  7. 7.
    Wolf, L., Bileschi, S.: A critical view of context. Int. J. Comput. Vis. 69(2), 251–261 (2006)CrossRefGoogle Scholar
  8. 8.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: The proceedings of the Seventh IEEE International Conference on Computer vision, 1999, vol. 2, pp. 1150–1157. IEEE (1999)Google Scholar
  9. 9.
    Tuytelaars, T., Van Gool, L., Bay, H., Ess, A.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  10. 10.
    Abdel-Hakim, A.E., Farag, A. et al.: Csift: a sift descriptor with color invariant characteristics. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1978–1983. IEEE (2006)Google Scholar
  11. 11.
    Suga, A., Fukuda, K., Takiguchi, T., Ariki, Y.: Object recognition and segmentation using sift and graph cuts. In: 19th International Conference on Pattern Recognition, ICPR 2008, pp. 1–4. IEEE (2008)Google Scholar
  12. 12.
    Ruf, B., Kokiopoulou, E., Detyniecki, M.: Mobile museum guide based on fast SIFT recognition. In: Detyniecki, M., Leiner, U., Nürnberger, A. (eds.) AMR 2008. LNCS, vol. 5811, pp. 170–183. Springer, Heidelberg (2010)Google Scholar
  13. 13.
    Mehrotra, H., Majhi, B., Gupta, P.: Annular Iris recognition using SURF. In: Chaudhury, S., Mitra, S., Murthy, C.A., Sastry, P.S., Pal, S.K. (eds.) PReMI 2009. LNCS, vol. 5909, pp. 464–469. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Khoshelham, K.: Extending generalized hough transform to detect 3d objects in laserrange data. In: ISPRS Workshop on Laser Scanning and SilviLaser 2007, 12–14 September 2007, Espoo, Finland. International Society for Photogrammetry and Remote Sensing (2007)Google Scholar
  15. 15.
    Flitton, G.T., Breckon, T.P., Bouallagu, N.M.: Object recognition using 3d sift in complex ct volumes. In: BMVC, pp. 1–12 (2010)Google Scholar
  16. 16.
    Knopp, J., Prasad, M., Willems, G., Timofte, R., Van Gool, L.: Hough transform and 3D SURF for robust three dimensional classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 589–602. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Zhong, Y.: Intrinsic shape signatures: a shape descriptor for 3d object recognition. In: 2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), pp. 689–696. IEEE (2009)Google Scholar
  18. 18.
    Drost, B., Ulrich, M., Navab, N., Ilic, S.: Model globally, match locally: efficient and robust 3d object recognition. In: 2010 IEEEConference on Computer Vision and Pattern Recognition (CVPR), pp. 998–1005. IEEE (2010)Google Scholar
  19. 19.
    Papazov, C., Burschka, D.: An efficient RANSAC for 3D object recognition in noisy and occluded scenes. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part I. LNCS, vol. 6492, pp. 135–148. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Tombari, F., Salti, S., Di Stefano, L.: Unique signatures of histograms for local surface description. In: Maragos, P., Paragios, N., Daniilidis, K. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 356–369. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Tombari, F., Di Stefano, L.: Hough voting for 3d object recognition under occlusion and clutter. IPSJ Trans. Comput. Vis. Appl. 4, 20–29 (2012)Google Scholar
  22. 22.
    Rodolà, E., Albarelli, A., Bergamasco, F., Torsello, A.: A scale independent selection process for 3d object recognition in cluttered scenes. Int. J. Comput. Vis. 102(1–3), 129–145 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Shafer, G., et al.: A Mathematical Theory of Evidence, vol. 1. Princeton University Press, Princeton (1976)zbMATHGoogle Scholar
  24. 24.
    Rusu, R.B., Cousins, S.: 3d is here: point cloud library (pcl). In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–4. IEEE (2011)Google Scholar
  25. 25.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  26. 26.
    Smets, P.: Constructing the pignistic probability function in a context ofuncertainty. In: UAI, vol. 89, pp. 29–40 (1989)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Thanh-Long Nguyen
    • 1
  • Didier Coquin
    • 1
    Email author
  • Reda Boukezzoula
    • 1
  1. 1.LISTIC Laboratory, Polytech Annecy-ChamberyUniversity of Savoie Mont-BlancAnnecy-le-vieuxFrance

Personalised recommendations