Towards a Non-oriented Approach for the Evaluation of Odor Quality

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 610)


When evaluating an odor, non-specialists generally provide descriptions as bags of terms. Nevertheless, these evaluations cannot be processed by classical odor analysis methods that have been designed for trained evaluators having an excellent mastery of professional controlled vocabulary. Indeed, currently, mainly oriented approaches based on learning vocabularies are used. These approaches too restrictively limit the possible descriptors available for an uninitiated public and therefore require a costly learning phase of the vocabulary. The objective of this work is to merge the information expressed by these free descriptions (terms) into a set of non-ambiguous descriptors best characterizing the odor; this will make it possible to evaluate the odors based on non-specialist descriptions. This paper discusses a non-oriented approach based on Natural Language Processing and Knowledge Representation techniques - it does not require learning a lexical field and can therefore be used to evaluate odors with non-specialist evaluators.


Sensorial analysis Distributional semantics Information fusion Taxonomy Odor quality Non-oriented approach 


  1. 1.
    Asher, M.I., Montefort, S., Björkstén, B., Lai, C.K., Strachan, D.P., Weiland, S.K., Williams, H.: Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC phases one and three repeat multicountry cross-sectional surveys. Lancet 368(9537), 733–743 (2006)CrossRefGoogle Scholar
  2. 2.
    Declercq, C., Pascal, M., Chanel, O., Corso, M., Lefranc, A., Medina, S.: Impact sanitaire de la pollution atmosphérique dans neuf villes françaises. Resultats du projet aphekom. Rev. Epidemiol. Sante Publique 60, S60–S61 (2012)CrossRefGoogle Scholar
  3. 3.
    David, S., Dubois, D., Rouby, C., Schaal, B.: L’expression des odeurs en français: analyse lexicale et représentation cognitive. Intellectica 24(1), 51–83 (1997)Google Scholar
  4. 4.
    Léger, C.: Smells supervision setting by AIR NORMAND, air pollution monitoring network Smells, straight perceptible nuisances. Pollut. Atmos. 47(187), 373–384 (2005)Google Scholar
  5. 5.
    Suffet, I.H., Rosenfeld, P.: The anatomy of odour wheels for odours of drinking water, wastewater, compost and the urban environment. Water Sci. Technol. 55(5), 335–344 (2007)CrossRefGoogle Scholar
  6. 6.
    Harispe, S., Ranwez, S., Janaqi, S., Montmain, J.: Semantic similarity from natural language and ontology analysis. Synth. Lect. Hum. Lang. Technol. 8(1), 1–254 (2015)CrossRefGoogle Scholar
  7. 7.
    Harispe, S., Sánchez, D., Ranwez, S., Janaqi, S., Montmain, J.: A framework for unifying ontology-based semantic similarity measures: a study in the biomedical domain. J. Biomed. Inform. 48, 38–53 (2014)CrossRefGoogle Scholar
  8. 8.
    Fiorini, N.: Semantic similarities at the core of generic indexing and clustering ap-proaches. Ph.D. thesis of the Université de Montpellier (2015)Google Scholar
  9. 9.
    Fiorini, N., Ranwez, S., Harispe, S., Ranwez, V., Montmain, J.: USI at BioASQ 2015 : a semantic similarity-based approach for semantic indexing. In: Working Notes Conference on Labs of the Evaluation Forum (CLEF), Toulouse, France (2015)Google Scholar
  10. 10.
    Harris, Z.: Distributional structure. Word 10(23), 146–162 (1954)CrossRefGoogle Scholar
  11. 11.
    Piana, M., Oddo, L., Bentabol, A., Bruneau, E., Bogdanov, S., et al.: Sensory analysis applied to honey: state of the art. Apidologie 35(Suppl. 1), S26–S37 (2004). doi: 10.1051/apido:2004048, HAL Id: hal-00891892Google Scholar
  12. 12.
    Horridge, M., Knublauch, H., Rector, A., Stevens, R., Wroe, C.: A Practical Guide to Building OWL Ontologies Using the Protégé-OWL Plugin and CO-ODE Tools Edition 1.0. University of Manchester, Manchester (2004)Google Scholar
  13. 13.
    Standard, B.: Air quality–determination of odour concentration by dynamic olfactometry. BS EN 13725 (2003)Google Scholar
  14. 14.
    Gentleman, R.: Visualizing and Distances using GO (2010).
  15. 15.
    Schlicker, A., Domingues, F.S., Rahnenführer, J., Legenhauer, T.: A new measure for functional similarity of gene products based on gene ontology. BMC Inform. 7(1), 302 (2006)Google Scholar
  16. 16.
    Harispe, S., Ranwez, S., Janaqi, S., Montmain, J.: Semantic similarity from Natural Language and Ontology Analysis, vol. 8. Morgan & Claypool Publishers, San Rafael (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Laboratory of Computer Science and Production Engineering (LGI2P)Ecole des Mines d’AlèsNîmes cedex 5France
  2. 2.Laboratory of Engineering for Industrial Environment (LGEI)Ecole des Mines d’AlèsAlès cedexFrance

Personalised recommendations