Skip to main content

Applications of Stochastic Differential Game Theory for Markov Jump Linear Systems to Finance and Insurance

  • Conference paper
  • First Online:
Non-cooperative Stochastic Differential Game Theory of Generalized Markov Jump Linear Systems

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 67))

Abstract

This chapter mainly introduces applications of stochastic differential game theory for Markov jump linear systems to finance and insurance. Firstly, a risk minimization problem is considered in a continuous-time Markovian regime switching financial model modulated by a continuous-time, finite-state, Markov chain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asmussen, S. (1989). Exponential families generated by phase-type distributions and other Markov lifetime. Scandinavian Journal of Statistics, 16(4), 319–334.

    MathSciNet  MATH  Google Scholar 

  2. Yeung, D. W. K., & Petrosyan, L. A. (2006). Cooperative stochastic differential games. New York: Springer.

    MATH  Google Scholar 

  3. Haller, H., & Lagunoff, R. (2000). Genericity and Markovian behavior in stochastic games. Econometrica, 68(6), 1231–1248.

    Article  MathSciNet  MATH  Google Scholar 

  4. Heath, D., Delbaen, F., Eber, J. M., et al. (1999). Coherent measures of risk. Mathematical Finance, 9(3), 203–228.

    Article  MathSciNet  MATH  Google Scholar 

  5. Asmussen, S. (1989). Risk theory in a Markovian environment. Scandinavian Actuarial Journal, 1989(2), 69–100.

    Article  MathSciNet  MATH  Google Scholar 

  6. Browne, S. (1995). Optimal investment policies for a firm with a random risk process: exponential utility and minimizing the probability of ruin. Mathematics of Operations Research, 20(4), 937–958.

    Article  MathSciNet  MATH  Google Scholar 

  7. Browne, S. (1997). Survival and growth with a liability: Optimal portfolio strategies in continuous time. Mathematics of Operations Research, 22(2), 468–493.

    Article  MathSciNet  MATH  Google Scholar 

  8. Browne, S. (1999). Beating a moving target: Optimal portfolio strategies for outperforming a stochastic benchmark. Finance and Stochastics, 3(3), 275–294.

    Article  MathSciNet  MATH  Google Scholar 

  9. Buffington, J., & Elliott, R. J. (2002). American options with regime switching. International Journal of Theoretical and Applied Finance, 5(5), 497–514.

    Article  MathSciNet  MATH  Google Scholar 

  10. Cairns, A. J. G. (2000). A discussion of parameter and model uncertainty in insurance. Insurance: Mathematics and Economics, 27(3), 313–330.

    MATH  Google Scholar 

  11. Cvitanić, J., & Karatzas, I. (1999). On dynamic measures of risk. Finance and Stochastics, 3(4), 451–482.

    Article  MathSciNet  MATH  Google Scholar 

  12. Daykin, C. D., Pentikainen, T., & Pesonen, M. (1993). Practical risk theory for actuaries. CRC Press.

    Google Scholar 

  13. Risk, M. (1996). Quantitative strategies research notes. Goldman Sachs.

    Google Scholar 

  14. Dufour, F., & Elliott, R. J. (1999). Filtering with discrete state observations. Applied Mathematics and Optimization, 40(2), 259–272.

    Article  MathSciNet  MATH  Google Scholar 

  15. Elliott, R. (1976). The existence of value in stochastic differential games. SIAM Journal on Control and Optimization, 14(1), 85–94.

    Article  MathSciNet  MATH  Google Scholar 

  16. Elliott, R. J. (1977). The existence of optimal controls and saddle points in stochastic differential games. In Proceedings of the Workshop on Differential Games, Enschede. Lecture Notes in Control and Information Sciences (Vol. 3, pp. 136–142).

    Google Scholar 

  17. Mataramvura, S., & Øksendal, B. (2008). Risk minimizing portfolios and HJBI equations for stochastic differential games. Stochastics An International Journal of Probability and Stochastic Processes, 80(4), 317–337.

    Article  MathSciNet  MATH  Google Scholar 

  18. Elliott, R. J. (1977). The optimal control of a stochastic system. SIAM Journal on Control and Optimization, 15(5), 756–778.

    Article  MathSciNet  MATH  Google Scholar 

  19. Elliott, R. J. (1982). Stochastic calculus and applications. Springer.

    Google Scholar 

  20. Föllmer, H., & Schied, A. (2002). Convex measures of risk and trading constraints. Finance and Stochastics, 6(4), 429–447.

    Article  MathSciNet  MATH  Google Scholar 

  21. Huang, L., & Mao, X. (2011). Stability of singular stochastic systems with Markovian switching. IEEE Transactions on Automatic Control, 56(2), 424–429.

    Article  MathSciNet  Google Scholar 

  22. Elliott, R. J. (1990). Filtering and control for point process observations. Recent Advances in Stochastic Calculus 1–27.

    Google Scholar 

  23. Friedman, M. (2007). Price theory. Transaction Publishers.

    Google Scholar 

  24. Stigler, G. J. (1994). Production and distribution theories. Transaction Publishers.

    Google Scholar 

  25. Lucas Jr., R. E. (1978). Asset prices in an exchange economy. Econometrica: Journal of the Econometric Society 1429–1445.

    Google Scholar 

  26. Øksendal, B., & Sulem, A. (2008). A game theoretic approach to martingale measures in incomplete markets. Surveys of Applied and Industrial Mathematics, 15, 18–24.

    MATH  Google Scholar 

  27. Harrison, J. M., & Kreps, D. M. (1979). Martingales and arbitrage in multiperiod securities markets. Journal of Economic theory, 20(3), 381–408.

    Article  MathSciNet  MATH  Google Scholar 

  28. Harrison, J. M., & Pliska, S. R. (1981). Martingales and stochastic integrals in the theory of continuous trading. Stochastic Processes and Their Applications, 11(3), 215–260.

    Article  MathSciNet  MATH  Google Scholar 

  29. Harrison, J. M., & Pliska, S. R. (1983). A stochastic calculus model of continuous trading: Complete markets. Stochastic Processes and Their Applications, 15(3), 313–316.

    Article  MathSciNet  MATH  Google Scholar 

  30. Dybvig, P. H., & Ross, S. A. (1987). Arbitrage. The New Palgrave: A Dictionary of Economics, 1, 100–106.

    Google Scholar 

  31. Back, K., & Pliska, S. R. (1991). On the fundamental theorem of asset pricing with an infinite state space. Journal of Mathematical Economics, 20(1), 1–18.

    Article  MathSciNet  MATH  Google Scholar 

  32. Schachermayer, W. (1992). A Hilbert space proof of the fundamental theorem of asset pricing in finite discrete time. Insurance: Mathematics and Economics, 11(4), 249–257.

    MathSciNet  MATH  Google Scholar 

  33. Delbaen, F., & Schachermayer, W. (1994). A general version of the fundamental theorem of asset pricing. Mathematische Annalen, 300(1), 463–520.

    Article  MathSciNet  MATH  Google Scholar 

  34. Elliott, R. J., Chan, L., & Siu, T. K. (2005). Option pricing and Esscher transform under regime switching. Annals of Finance, 1(4), 423–432.

    Article  MATH  Google Scholar 

  35. Gerber, H. U., & Shiu, E. S. W. (1994). Option pricing by Esscher transforms. Transactions of Society of Actuaries, 46(3), 99–191.

    Google Scholar 

  36. Bühlmann, H. (1980). An economic premium principle. Astin Bulletin, 11(01), 52–60.

    Article  MathSciNet  Google Scholar 

  37. Bühlmann, H. (1984). The general economic premium principle. Astin Bulletin, 14(01), 13–21.

    Article  Google Scholar 

  38. Elliott, R. J., Chan, L., & Siu, T. K. (2005). Option pricing and Esscher transform under regime switching. Annals of Finance, 1(4), 423–432.

    Article  MATH  Google Scholar 

  39. Elliott, R. J., Aggoun, L., & Moore, J. B. (2008). Hidden Markov models: Estimation and control. Springer Science & Business Media.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-ke Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, Ck., Zhu, Hn., Zhou, Hy., Bin, N. (2017). Applications of Stochastic Differential Game Theory for Markov Jump Linear Systems to Finance and Insurance. In: Non-cooperative Stochastic Differential Game Theory of Generalized Markov Jump Linear Systems. Studies in Systems, Decision and Control, vol 67. Springer, Cham. https://doi.org/10.1007/978-3-319-40587-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40587-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40586-5

  • Online ISBN: 978-3-319-40587-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics