Possibilistic Semantics for a Modal KD45 Extension of Gödel Fuzzy Logic

  • Félix Bou
  • Francesc Esteva
  • Lluís GodoEmail author
  • Ricardo Oscar Rodriguez
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 611)


In this paper we provide a simplified semantics for the logic \(KD45(\mathbf {G})\), i.e. the many-valued Gödel counterpart of the classical modal logic KD45. More precisely, we characterize \(KD45(\mathbf {G})\) as the set of valid formulae of the class of possibilistic Gödel Kripke Frames \(\langle W, \pi \rangle \), where W is a non-empty set of worlds and \(\pi : W \rightarrow [0, 1]\) is a normalized possibility distribution on W.



The authors are grateful to the anonymous reviewers for their helpful comments. They acknowledge partial support by the H2020-MSCA-RISE-2015 project SYSMICS, the Spanish MINECO/FEDER project RASO (TIN2015-71799-C2-1-P) and the Argentinean project PIP CONICET 11220150100412CO.


  1. 1.
    Banerjee, M., Dubois, D.: A simple logic for reasoning about incomplete knowledge. Int. J. Approximate Reasoning 55(2), 639–653 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bou, F., Esteva, F., Godo, L., Rodríguez, R.: On the minimum many-valued modal logic over a finite residuated lattice. J. Logic Comput. 21(5), 739–790 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bou, F., Esteva, F., Godo, L.: On possibilistic modal logics defined over MTL-chains. In: Montagna, F. (ed.) Petr Hájek on Mathematical Fuzzy Logic. Outstanding Contributions to Logic, vol. 6, pp. 225–244. Springer, Switzerland (2015)Google Scholar
  4. 4.
    Caicedo, X., Rodríguez, R.: Standard Gödel modal logics. Studia Logica 94(2), 189–214 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Caicedo, X., Rodríguez, R.: Bi-modal Gödel modal logics. J. Logic Comput. 25–1, 37–55 (2015)CrossRefzbMATHGoogle Scholar
  6. 6.
    Dellunde, P., Godo, L., Marchioni, E.: Extending possibilistic logic over Gödel logic. Int. J. Approx. Reasoning 52(1), 63–75 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dubois, D., Lang, J., Prade, H.: Possibilistic logic, In: Gabbay, et al. (ed.) Handbook of Logic in Artificial Intelligence and Logic Programming, Non monotonic Reasoning and Uncertain Reasoning, vol. 3, pp. 439–513. Oxford UP (1994)Google Scholar
  8. 8.
    Dubois, D., Prade, H.: Possibilistic logic: a retrospective and prospective view. Fuzzy Sets Syst. 144, 3–23 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dubois, D., Prade, H., Schockaert, S.: Reasoning about uncertainty and explicit ignorance in generalized possibilistic logic. Proc. ECAI 2014, 261–266 (2014)Google Scholar
  10. 10.
    Fitting, M.: Many valued modal logics. Fundamenta Informaticae 15, 325–254 (1991)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Hájek, P.: Metamathematics of Fuzzy Logic. Trends in Logic, vol. 4. Kluwer, Dordrecht (1998)zbMATHGoogle Scholar
  12. 12.
    Hájek, P., Harmancová, D., Esteva, F., Garcia, P., Godo, L.: On modal logics for qualitative possibility in a fuzzy setting. In: Proceeding of the 94 Uncertainty in Artificial Intelligence Conference (UAI 1994), pp. 278–285. Morgan Kaufmann (1994)Google Scholar
  13. 13.
    Pietruszczak, A.: Simplified Kripke style semantics for modal logics K45, KB4 and KD45. Bull. Sect. Logic 38(3/4), 163–171 (2009)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Félix Bou
    • 1
  • Francesc Esteva
    • 1
  • Lluís Godo
    • 1
    Email author
  • Ricardo Oscar Rodriguez
    • 2
  1. 1.Artificial Intelligence Research Institute, IIIA - CSICBellaterraSpain
  2. 2.Departamento de ComputaciónFCEyN - UBABuenos AiresArgentina

Personalised recommendations