# Possibilistic Semantics for a Modal *KD*45 Extension of Gödel Fuzzy Logic

Conference paper

First Online:

## Abstract

In this paper we provide a simplified semantics for the logic \(KD45(\mathbf {G})\), i.e. the many-valued Gödel counterpart of the classical modal logic *KD*45. More precisely, we characterize \(KD45(\mathbf {G})\) as the set of valid formulae of the class of possibilistic Gödel Kripke Frames \(\langle W, \pi \rangle \), where *W* is a non-empty set of worlds and \(\pi : W \rightarrow [0, 1]\) is a normalized possibility distribution on *W*.

## Notes

### Acknowledgments

The authors are grateful to the anonymous reviewers for their helpful comments. They acknowledge partial support by the H2020-MSCA-RISE-2015 project SYSMICS, the Spanish MINECO/FEDER project RASO (TIN2015-71799-C2-1-P) and the Argentinean project PIP CONICET 11220150100412CO.

## References

- 1.Banerjee, M., Dubois, D.: A simple logic for reasoning about incomplete knowledge. Int. J. Approximate Reasoning
**55**(2), 639–653 (2014)MathSciNetCrossRefzbMATHGoogle Scholar - 2.Bou, F., Esteva, F., Godo, L., Rodríguez, R.: On the minimum many-valued modal logic over a finite residuated lattice. J. Logic Comput.
**21**(5), 739–790 (2011)MathSciNetCrossRefzbMATHGoogle Scholar - 3.Bou, F., Esteva, F., Godo, L.: On possibilistic modal logics defined over MTL-chains. In: Montagna, F. (ed.) Petr Hájek on Mathematical Fuzzy Logic. Outstanding Contributions to Logic, vol. 6, pp. 225–244. Springer, Switzerland (2015)Google Scholar
- 4.Caicedo, X., Rodríguez, R.: Standard Gödel modal logics. Studia Logica
**94**(2), 189–214 (2010)MathSciNetCrossRefzbMATHGoogle Scholar - 5.Caicedo, X., Rodríguez, R.: Bi-modal Gödel modal logics. J. Logic Comput.
**25–1**, 37–55 (2015)CrossRefzbMATHGoogle Scholar - 6.Dellunde, P., Godo, L., Marchioni, E.: Extending possibilistic logic over Gödel logic. Int. J. Approx. Reasoning
**52**(1), 63–75 (2011)MathSciNetCrossRefzbMATHGoogle Scholar - 7.Dubois, D., Lang, J., Prade, H.: Possibilistic logic, In: Gabbay, et al. (ed.) Handbook of Logic in Artificial Intelligence and Logic Programming, Non monotonic Reasoning and Uncertain Reasoning, vol. 3, pp. 439–513. Oxford UP (1994)Google Scholar
- 8.Dubois, D., Prade, H.: Possibilistic logic: a retrospective and prospective view. Fuzzy Sets Syst.
**144**, 3–23 (2004)MathSciNetCrossRefzbMATHGoogle Scholar - 9.Dubois, D., Prade, H., Schockaert, S.: Reasoning about uncertainty and explicit ignorance in generalized possibilistic logic. Proc. ECAI
**2014**, 261–266 (2014)Google Scholar - 10.Fitting, M.: Many valued modal logics. Fundamenta Informaticae
**15**, 325–254 (1991)MathSciNetzbMATHGoogle Scholar - 11.Hájek, P.: Metamathematics of Fuzzy Logic. Trends in Logic, vol. 4. Kluwer, Dordrecht (1998)zbMATHGoogle Scholar
- 12.Hájek, P., Harmancová, D., Esteva, F., Garcia, P., Godo, L.: On modal logics for qualitative possibility in a fuzzy setting. In: Proceeding of the 94 Uncertainty in Artificial Intelligence Conference (UAI 1994), pp. 278–285. Morgan Kaufmann (1994)Google Scholar
- 13.Pietruszczak, A.: Simplified Kripke style semantics for modal logics K45, KB4 and KD45. Bull. Sect. Logic
**38**(3/4), 163–171 (2009)MathSciNetzbMATHGoogle Scholar

## Copyright information

© Springer International Publishing Switzerland 2016