Skip to main content

Application of Permutation Group Theory in Reversible Logic Synthesis

  • Conference paper
  • First Online:
Reversible Computation (RC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9720))

Included in the following conference series:

Abstract

The paper discusses various applications of permutation group theory in the synthesis of reversible logic circuits consisting of Toffoli gates with negative control lines. An asymptotically optimal synthesis algorithm for circuits consisting of gates from the NCT library is described. An algorithm for gate complexity reduction, based on equivalent replacements of gates compositions, is introduced. A new approach for combining a group-theory-based synthesis algorithm with a Reed–Muller-spectra-based synthesis algorithm is described. Experimental results are presented to show that the proposed synthesis techniques allow a reduction in input lines count, gate complexity or quantum cost of reversible circuits for various benchmark functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Hereinafter a multiplication of permutations is left-associative: \((f \circ g)(x) = g(f(x))\).

References

  1. Abdessaied, N., Wille, R., Soeken, M., Drechsler, R.: Reducing the depth of quantum circuits using additional circuit lines. In: Dueck, G.W., Miller, D.M. (eds.) RC 2013. LNCS, vol. 7948, pp. 221–233. Springer, Heidelberg (2013). http://dx.doi.org/10.1007/978-3-642-38986-3_18

    Chapter  Google Scholar 

  2. Arabzadeh, M., Saeedi, M., Zamani, M.S.: Rule-based optimization of reversible circuits. In: 2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 849–854 (2010). http://dx.org/10.1109/ASPDAC.2010.5419684

  3. Arabzadeh, M., Saeedi, M.: RCViewer+ — a viewer/analyzer for reversible and quantum circuits (2013). http://ceit.aut.ac.ir/QDA/RCV.htm

  4. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973). http://dx.org/10.1147/rd.176.0525

    Article  MathSciNet  MATH  Google Scholar 

  5. Iwama, K., Kambayashi, Y., Yamashita, S.: Transformation rules for designing CNOT-based quantum circuits. In: Proceedings of 39th Annual Design Automation Conference (DAC 2002), NY, USA, pp. 419–424 (2002). http://dx.org/10.1145/513918.514026

  6. Maslov, D., Dueck, G.W., Miller, D.M., Negrevergne, C.: Quantum circuit simplification and level compaction. IEEE Trans. Comput.-Aided Des. 27(3), 436–444 (2008). http://dx.org/10.1109/TCAD.2007.911334

    Article  Google Scholar 

  7. Maslov, D.A.: Reversible logic synthesis benchmarks page (2011). http://webhome.cs.uvic.ca/~dmaslov/

  8. Maslov, D.A.: On the advantages of using relative phase Toffolis with an application to multiple control Toffoli optimization. CoRR abs/1508.03273 (2016). http://arxiv.org/abs/1508.03273

  9. Maslov, D.A., Dueck, G.W., Miller, D.M.: Techniques for the synthesis of reversible Toffoli networks. ACM Trans. Des. Autom. Electron. Syst. 12(4), 42 (2007). http://dx.org/10.1145/1278349.1278355

    Article  Google Scholar 

  10. Miller, D.M., Wille, R., Drechsler, R.: Reducing reversible circuit cost by adding lines. In: Proceedings of 40th IEEE International Symposium on Multiple-Valued Logic (ISMVL 2010), pp. 217–222 (2010). http://dx.org/10.1109/ISMVL.2010.48

  11. Rahman, M.Z., Rice, J.E.: Templates for positive and negative control Toffoli networks. In: Yamashita, S., Minato, S. (eds.) RC 2014. LNCS, vol. 8507, pp. 125–136. Springer, Heidelberg (2014). http://dx.doi.org/10.1007/978-3-319-08494-7_10

    Google Scholar 

  12. Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits — a survey. ACM Comput. Surv. 45(2), 21:1–21:34 (2013). http://dx.org/10.1145/2431211.2431220

    Article  MATH  Google Scholar 

  13. Saeedi, M., Zamani, M.S., Sedighi, M., Sasanian, Z.: Reversible circuit synthesis using a cycle-based approach. ACM J. Emerg. Technol. Comput. Syst. 6(4), 13:1–13:26 (2010). http://dx.org/10.1145/1877745.1877747

    Article  Google Scholar 

  14. Schaeffer, B., Perkowski, M.A.: A cost minimization approach to synthesis of linear reversible circuits. CoRR abs/1407.0070 (2014). http://arxiv.org/abs/1407.0070

  15. Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic circuits. IEEE Trans. Comput.-Aided Des. 22(6), 710–722 (2003). http://dx.org/10.1109/TCAD.2003.811448

    Article  Google Scholar 

  16. Wille, R., GroĂŸe, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: an online resource for reversible functions and reversible circuits. In: Proceedings of 38th IEEE International Symposium on Multiple-Valued Logic (ISMVL 2008), pp. 220–225 (2008). http://www.revlib.org

  17. Zakablukov, D.V.: Reduction of the reversible circuits gate complexity without using the equivalent replacement tables for the gate compositions. BMSTU J. Sci. Educ. 3, 275–289 (2014). (in Russian), http://dx.org/10.7463/0314.0699195

    Google Scholar 

  18. Zakablukov, D.V.: On asymptotic gate complexity and depth of reversible circuits without additional memory. CoRR abs/1504.06876 (2015). http://arxiv.org/abs/1504.06876

  19. Zakablukov, D.V.: ReversibleLogicGenerator Software (2015). https://github.com/dmitry-zakablukov/ReversibleLogicGenerator

Download references

Acknowledgments

The reported study was partially supported by RFBR, research project No. 16-01-00196 A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry V. Zakablukov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Zakablukov, D.V. (2016). Application of Permutation Group Theory in Reversible Logic Synthesis. In: Devitt, S., Lanese, I. (eds) Reversible Computation. RC 2016. Lecture Notes in Computer Science(), vol 9720. Springer, Cham. https://doi.org/10.1007/978-3-319-40578-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40578-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40577-3

  • Online ISBN: 978-3-319-40578-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics