Design and Fabrication of CSWAP Gate Based on Nano-Electromechanical Systems

  • Mert Yüksel
  • Selçuk Oğuz Erbil
  • Atakan B. Arı
  • M. Selim HanayEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9720)


In order to reduce undesired heat dissipation, reversible logic offers a promising solution where the erasure of information can be avoided to overcome the Landauer limit. Among the reversible logic gates, Fredkin (CSWAP) gate can be used to compute any Boolean function in a reversible manner. To realize reversible computation gates, Nano-electromechanical Systems (NEMS) offer a viable platform, since NEMS can be produced en masse using microfabrication technology and controlled electronically at high-speeds. In this work-in-progress paper, design and fabrication of a NEMS-based implementation of a CSWAP gate is presented. In the design, the binary information is stored by the buckling direction of nanomechanical beams and CSWAP operation is accomplished through a mechanism which can selectively allow/block the forces from input stages to the output stages. The gate design is realized by fabricating NEMS devices on a Silicon-on-Insulator substrate.


Reversible logic CSWAP gate NEMS Buckling Nanomechanical computation 



This work was funded by The Scientific and Technological Research Council of Turkey (TÜBİTAK) with project number 115E833. We acknowledge support from European Cooperation in Science and Technology (COST) under Action IC1405.


  1. 1.
    Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Berut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz, E.: Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 187–189 (2012)CrossRefGoogle Scholar
  3. 3.
    Bennet, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Sharma, A., Ram, W.S., Amarnath, C.: Mechanical logic devices and circuits. NaCoMM 9, 235–239 (2009)Google Scholar
  5. 5.
    Wenzler, J.S., Dunn, T., Toffoli, T., Mohanty, P.: A nanomechanical Fredkin gate. Nano Lett. 14(1), 89–93 (2013)CrossRefGoogle Scholar
  6. 6.
    Mahboob, I., Mounaix, M., Nishiguchi, K., Fujiwara, A., Yamaguchi, H.: A multimode electromechanical parametric resonator array. Sci. Rep. 4 (2014). Article no. 4448 Google Scholar
  7. 7.
    Huang, X.M.H., Zorman, C.A., Mehregany, M., Roukes, M.L.: Nanodevice motion at microwave frequencies. Nature 421, 496–496 (2003)CrossRefGoogle Scholar
  8. 8.
    Lee, T.H.: Electromechanical computing at 500 °C using silicon carbide. Science 329(5997), 1316–1318 (2010)CrossRefGoogle Scholar
  9. 9.
    Merkle, R.C.: Two types of mechanical reversible logic. Nanotechnology 4(2), 114 (1993)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hopcroft, M.A.: What is the Young’s modulus of silicon. IEEE J. Microelectromech. Syst. 19, 229–238 (2010)CrossRefGoogle Scholar
  11. 11.
    Legtenberg, R., Groeneveld, A.W., Elwenspoek, M.: Comb-drive actuators for large displacements. J. Micromech. Microeng. 6, 320–329 (1996). IOPscienceCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mert Yüksel
    • 1
  • Selçuk Oğuz Erbil
    • 1
  • Atakan B. Arı
    • 1
  • M. Selim Hanay
    • 1
    • 2
    Email author
  1. 1.Department of Mechanical EngineeringBilkent UniversityAnkaraTurkey
  2. 2.National Nanotechnology Research Center (UNAM)Bilkent UniversityAnkaraTurkey

Personalised recommendations