Skip to main content

Scalable Algorithms for the Solution of Higher-Dimensional PDEs

  • Conference paper
  • First Online:
Software for Exascale Computing - SPPEXA 2013-2015

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 113))

Abstract

The solution of higher-dimensional problems, such as the simulation of plasma turbulence in a fusion device as described by the five-dimensional gyrokinetic equations, is a grand challenge for current and future high-performance computing. The sparse grid combination technique is a promising approach to the solution of these problems on large-scale distributed memory systems. The combination technique numerically decomposes a single large problem into multiple moderately-sized partial problems that can be computed in parallel, independently and asynchronously of each other. The ability to efficiently combine the individual partial solutions to a common sparse grid solution is a key to the overall performance of such large-scale computations. In this work, we present new algorithms for the recombination of distributed component grids and demonstrate their scalability to 180, 225 cores on the supercomputer Hazel Hen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. SG + + library, http://sgpp.sparsegrids.org/

  2. Ali, M.M., Strazdins, P.E., Harding, B., Hegland, M., Larson, J.W.: A fault-tolerant gyrokinetic plasma application using the sparse grid combination technique. In: International Conference on High Performance Computing & Simulation (HPCS), Amsterdam, pp. 499–507. IEEE (2015)

    Google Scholar 

  3. Brizard, A., Hahm, T.: Foundations of nonlinear gyrokinetic theory. Rev. Mod. Phys. 79, 421–468 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cappello, F., Geist, A., Gropp, W., Kale, S., Kramer, B., Snir, M.: Toward exascale resilience: 2014 update. Supercomput. Front. Innov. 1 (1), 5–28 (2014)

    Google Scholar 

  6. Dannert, T.: Gyrokinetische Simulation von Plasmaturbulenz mit gefangenen Teilchen und elektromagnetischen Effekten. Ph.D. thesis, Technische Universität München (2004)

    Google Scholar 

  7. Dannert, T., Görler, T., Jenko, F., Merz, F.: Jülich blue gene/p extreme scaling workshop 2009. Technical report, Jülich Supercomputing Center (2010)

    Google Scholar 

  8. Doyle, E.J., Kamada, Y., Osborne, T.H., et al.: Chapter 2: plasma confinement and transport. Nucl. Fusion 47 (6), S18 (2007)

    Article  Google Scholar 

  9. Görler, T., Lapillonne, X., Brunner, S., Dannert, T., Jenko, F., Merz, F., Told, D.: The global version of the gyrokinetic turbulence code GENE. J. Comput. Phys. 230 (18), 7053–7071 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Griebel, M., Huber, W., Rüde, U., Störtkuhl, T.: The combination technique for parallel sparse-grid-preconditioning or -solution of PDEs on workstation networks. In: Parallel Processing: CONPAR 92 VAPP V. LNCS, vol. 634. Springer, Berlin/New York (1992)

    Google Scholar 

  11. Griebel, M., Schneider, M., Zenger, C.: A combination technique for the solution of sparse grid problems. In: de Groen, P., Beauwens, R. (eds.) Iterative Methods in Linear Algebra. IMACS, pp. 263–281. Elsevier/North Holland (1992)

    Google Scholar 

  12. Heene, M., Pflüger, D.: Efficient and scalable distributed-memory hierarchization algorithms for the sparse grid combination technique. In: Parallel Computing: On the Road to Exascale. Advances in Parallel Computing, vol. 27. IOS Press, Amsterdam (2016)

    Google Scholar 

  13. Heene, M., Kowitz, C., Pflüger, D.: Load balancing for massively parallel computations with the sparse grid combination technique. In: Parallel Computing: Accelerating Computational Science and Engineering (CSE). Advances in Parallel Computing, vol. 25, pp. 574–583. IOS Press, Amsterdam (2014)

    Google Scholar 

  14. Hegland, M., Garcke, J., Challis, V.: The combination technique and some generalisations. Linear Algebra Appl. 420 (2–3), 249–275 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hegland, M., Harding, B., Kowitz, C., Pflüger, D., Strazdins, P.: Recent developments in the theory and application of the sparse grid combination technique. In: Proceedings of the SPPEXA Symposium 2016, Garching. Lecture Notes in Computational Science and Engineering. Springer (2016)

    Google Scholar 

  16. Hupp, P., Jacob, R., Heene, M., et al.: Global communication schemes for the sparse grid combination technique. Par. Comput.: Accel. Comput. Sci. Eng. 25, pp. 564–573 (2014)

    Google Scholar 

  17. Hupp, P., Heene, M., Jacob, R., Pflüger, D.: Global communication schemes for the numerical solution of high-dimensional {PDEs}. Parallel Comput. 52, 78–105 (2016)

    Article  MathSciNet  Google Scholar 

  18. Kowitz, C., Hegland, M.: The sparse grid combination technique for computing eigenvalues in linear gyrokinetics. Procedia Comput. Sci. 18 (0), 449–458 (2013). 2013 International Conference on Computational Science

    Google Scholar 

  19. Parra Hinojosa, A., Kowitz, C., Heene, M., Pflüger, D., Bungartz, H.J.: Towards a fault-tolerant, scalable implementation of GENE. In: Proceedings of ICCE 2014, Nara. Lecture Notes in Computational Science and Engineering. Springer (2015)

    Google Scholar 

  20. Parra Hinojosa, A., Harding, B., Hegland, M., Bungartz, H.J.: Handling silent data corruption with the sparse grid combination technique. In: Proceedings of the SPPEXA Symposium 2016, Garching. Lecture Notes in Computational Science and Engineering. Springer (2016)

    Google Scholar 

  21. Pflüger, D., Bungartz, H.J., Griebel, M., Jenko, F., et al.: EXAHD: an exa-scalable two-level sparse grid approach for higher-dimensional problems in plasma physics and beyond. In: Euro-Par 2014: parallel processing workshops, Porto. Lecture Notes in Computer Science, vol. 8806, pp. 565–576. Springer International Publishing (2014)

    Google Scholar 

  22. Thakur, R., Rabenseifner, R., Gropp, W.: Optimization of collective communication operations in MPICH. Int. J. High Perform. C. 19, 49–66 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Research Foundation (DFG) through the Priority Program 1648 “Software for Exascale Computing” (SPPEXA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Heene .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Heene, M., Pflüger, D. (2016). Scalable Algorithms for the Solution of Higher-Dimensional PDEs. In: Bungartz, HJ., Neumann, P., Nagel, W. (eds) Software for Exascale Computing - SPPEXA 2013-2015. Lecture Notes in Computational Science and Engineering, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-319-40528-5_8

Download citation

Publish with us

Policies and ethics