Systems of Partial Differential Equations in ExaSlang

  • Christian SchmittEmail author
  • Sebastian Kuckuk
  • Frank Hannig
  • Jürgen Teich
  • Harald Köstler
  • Ulrich Rüde
  • Christian Lengauer
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 113)


As HPC systems are becoming increasingly heterogeneous and diverse, writing software that attains maximum performance and scalability while remaining portable as well as easily composable is getting more and more challenging. Additionally, code that has been aggressively optimized for certain execution platforms is usually not easily portable to others without either losing a great share of performance or investing many hours by re-applying optimizations. One possible remedy is to exploit the potential given by technologies such as domain-specific languages (DSLs) that provide appropriate abstractions and allow the application of technologies like automatic code generation and auto-tuning. In the domain of geometric multigrid solvers, project ExaStencils follows this road by aiming at providing highly optimized and scalable numerical solvers, specifically tuned for a given application and target platform. Here, we introduce its DSL ExaSlang with data types for local vectors to support computations that use point-local vectors and matrices. These data types allow an intuitive modeling of many physical problems represented by systems of partial differential equations (PDEs), e.g., the simulation of flows that include vector-valued velocities.


Data Type Optical Flow Multigrid Method Software Product Line Stencil Computation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the German Research Foundation (DFG), as part of Priority Program 1648 “Software for Exascale Computing” in project under contracts TE 163/17-1, RU 422/15-1 and LE 912/15-1.


  1. 1.
    Bezanson, J., Karpinski, S., Shah, V.B., Edelman, A.: Julia: a fast dynamic language for technical computing. CoRR (2012). arXiv:1209.5145Google Scholar
  2. 2.
    Brandt, A.: Rigorous quantitative analysis of multigrid, I: constant coefficients two-level cycle with L 2-norm. SIAM J. Numer. Anal. 31 (6), 1695–1730 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Christen, M., Schenk, O., Burkhart, H.: PATUS: A code generation and autotuning framework for parallel iterative stencil computations on modern microarchitectures. In: Proceedings of IEEE International Parallel & Distributed Processing Symposium (IPDPS). pp. 676–687. IEEE (2011)Google Scholar
  4. 4.
    DeVito, Z., Joubert, N., Palaciosy, F., Oakleyz, S., Medinaz, M., Barrientos, M., Elsenz, E., Hamz, F., Aiken, A., Duraisamy, K., Darvez, E., Alonso, J., Hanrahan, P.: Liszt: A domain specific language for building portable mesh-based PDE solvers. In: Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis (SC). ACM (2011), paper 9, 12pp.Google Scholar
  5. 5.
    Gysi, T., Osuna, C., Fuhrer, O., Bianco, M., Schulthess, T.C.: STELLA: a domain-specific tool for structured grid methods in weather and climate models. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC), pp. 41:1–41:12. ACM (2015)Google Scholar
  6. 6.
    Hackbusch, W.: Multi-Grid Methods and Applications. Springer, Berlin/New York (1985)CrossRefzbMATHGoogle Scholar
  7. 7.
    Köstler, H.: A multigrid framework for variational approaches in medical image processing and computer vision. Ph.D. thesis, Friedrich-Alexander University of Erlangen-Nürnberg (2008)Google Scholar
  8. 8.
    Kronawitter, S., Lengauer, C.: Optimizations applied by the ExaStencils code generator. Technical Report, MIP-1502, Faculty of Informatics and Mathematics, University of Passau (2015)Google Scholar
  9. 9.
    Lengauer, C., Apel, S., Bolten, M., Größlinger, A., Hannig, F., Köstler, H., Rüde, U., Teich, J., Grebhahn, A., Kronawitter, S., Kuckuk, S., Rittich, H., Schmitt, C.: ExaStencils: advanced stencil-code engineering. In: Euro-Par 2014: Parallel Processing Workshops. Lecture Notes in Computer Science, vol. 8806, pp. 553–564. Springer (2014)Google Scholar
  10. 10.
    Logg, A., Mardal, K.A., Wells, G.N. (eds.): Automated Solution of Differential Equations by the Finite Element Method. Lecture Notes in Computational Science and Engineering, vol. 84. Springer, Berlin/New York (2012)Google Scholar
  11. 11.
    Membarth, R., Reiche, O., Hannig, F., Teich, J., Körner, M., Eckert, W.: HIPAcc: a domain-specific language and compiler for image processing. IEEE T. Parall. Distr. (2015), early view, 14 pages. doi:10.1109/TPDS.2015.2394802Google Scholar
  12. 12.
    Membarth, R., Reiche, O., Schmitt, C., Hannig, F., Teich, J., Stürmer, M., Köstler, H.: Towards a performance-portable description of geometric multigrid algorithms using a domain-specific language. J. Parallel Distrib. Comput. 74 (12), 3191–3201 (2014)CrossRefGoogle Scholar
  13. 13.
    Odersky, M., Spoon, L., Venners, B.: Programming in Scala, 2nd edn. Artima, Walnut Creek (2011)Google Scholar
  14. 14.
    Püschel, M., Franchetti, F., Voronenko, Y.: SPIRAL. In: Padua, D.A., et al. (eds.) Encyclopedia of Parallel Computing, pp. 1920–1933. Springer (2011)Google Scholar
  15. 15.
    Rathgeber, F., Ham, D.A., Mitchell, L., Lange, M., Luporini, F., McRae, A.T.T., Bercea, G.T., Markall, G.R., Kelly, P.H.J.: Firedrake: automating the finite element method by composing abstractions. CoRR (2015). arXiv:1501.01809Google Scholar
  16. 16.
    Rathgeber, F., Markall, G.R., Mitchell, L., Loriant, N., Ham, D.A., Bertolli, C., Kelly, P.H.: PyOP2: A high-level framework for performance-portable simulations on unstructured meshes. In: Proceedings of the 2nd International Workshop on Domain-Specific Languages and High-Level Frameworks for High Performance Computing (WOLFHPC), pp. 1116–1123. IEEE Computer Society (2012)Google Scholar
  17. 17.
    Rawat, P., Kong, M., Henretty, T., Holewinski, J., Stock, K., Pouchet, L.N., Ramanujam, J., Rountev, A., Sadayappan, P.: SDSLc: A multi-target domain-specific compiler for stencil computations. In: Proceedings of the 5th International Workshop on Domain-Specific Languages and High-Level Frameworks for High Performance Computing (WOLFHPC). pp. 6:1–6:10. ACM (2015)Google Scholar
  18. 18.
    Schmitt, C., Kuckuk, S., Hannig, F., Köstler, H., Teich, J.: ExaSlang: A Domain-Specific Language for Highly Scalable Multigrid Solvers. In: Proceedings of the 4th International Workshop on Domain-Specific Languages and High-Level Frameworks for High Performance Computing (WOLFHPC), pp. 42–51. ACM (2014)Google Scholar
  19. 19.
    Schmitt, C., Kuckuk, S., Köstler, H., Hannig, F., Teich, J.: An evaluation of domain-specific language technologies for code generation. In: Proceedings of the International Conference on Computational Science and its Applications (ICCSA), pp. 18–26. IEEE Computer Society (2014)Google Scholar
  20. 20.
    Schmitt, C., Schmid, M., Hannig, F., Teich, J., Kuckuk, S., Köstler, H.: Generation of multigrid-based numerical solvers for FPGA accelerators. In: Größlinger, A., Köstler, H. (eds.) Proceedings of the 2nd International Workshop on High-Performance Stencil Computations (HiStencils), pp. 9–15 (2015)Google Scholar
  21. 21.
    Siegmund, N., Grebhahn, A., Apel, S., Kästner, C.: Performance-influence models for highly configurable systems. In: Proceedings of the European Software Engineering Conference and ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE), pp. 284–294. ACM (2015)Google Scholar
  22. 22.
    Tang, Y., Chowdhury, R.A., Kuszmaul, B.C., Luk, C.K., Leiserson, C.E.: The Pochoir stencil compiler. In: Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 117–128. ACM (2011)Google Scholar
  23. 23.
    Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. Academic, San Diego (2001)zbMATHGoogle Scholar
  24. 24.
    Unat, D., Cai, X., Baden, S.B.: Mint: Realizing CUDA performance in 3D stencil methods with annotated C. In: Proceedings of the International Conference on Supercomputing (ISC), pp. 214–224. ACM (2011)Google Scholar
  25. 25.
    Wienands, R., Joppich, W.: Practical Fourier Analysis for Multigrid Methods. Chapman Hall/CRC Press, Boca Raton (2005)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Christian Schmitt
    • 1
    Email author
  • Sebastian Kuckuk
    • 1
  • Frank Hannig
    • 1
  • Jürgen Teich
    • 1
  • Harald Köstler
    • 1
  • Ulrich Rüde
    • 1
  • Christian Lengauer
    • 2
  1. 1.Department of Computer ScienceErlangenGermany
  2. 2.Faculty of Informatics and MathematicsPassauGermany

Personalised recommendations