Advertisement

Space and Time Parallel Multigrid for Optimization and Uncertainty Quantification in PDE Simulations

  • Lars GrasedyckEmail author
  • Christian Löbbert
  • Gabriel Wittum
  • Arne Nägel
  • Volker Schulz
  • Martin Siebenborn
  • Rolf Krause
  • Pietro Benedusi
  • Uwe Küster
  • Björn Dick
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 113)

Abstract

In this article we present a complete parallelization approach for simulations of PDEs with applications in optimization and uncertainty quantification. The method of choice for linear or nonlinear elliptic or parabolic problems is the geometric multigrid method since it can achieve optimal (linear) complexity in terms of degrees of freedom, and it can be combined with adaptive refinement strategies in order to find the minimal number of degrees of freedom. This optimal solver is parallelized such that weak and strong scaling is possible for extreme scale HPC architectures. For the space parallelization of the multigrid method we use a tree based approach that allows for an adaptive grid refinement and online load balancing. Parallelization in time is achieved by SDC/ISDC or a space-time formulation. As an example we consider the permeation through human skin which serves as a diffusion model problem where aspects of shape optimization, uncertainty quantification as well as sensitivity to geometry and material parameters are studied. All methods are developed and tested in the UG4 library.

Keywords

Clock Frequency Uncertainty Quantification Shape Gradient Precision Time Protocol Uniform Refinement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

All ten authors gratefully acknowledge support from the DFG (Deutsche Forschungsgemeinschaft) within the DFG priority program on software for exascale computing (SPPEXA), project Exasolvers.

References

  1. 1.
    Ballani, J., Grasedyck, L.: Hierarchical tensor approximation of output quantities of parameter-dependent PDEs. SIAM/ASA J. Uncertain. Quantif. 3 (1), 852–872 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bastian, P., Wittum, G.: Robustness and adaptivity: the UG concept. In: Hemker, P., Wesseling, P. (eds.) Multigrid Methods IV, Proceedings of the Fourth European Multigrid Conference. Birkhäuser, Basel (1994)Google Scholar
  3. 3.
    Benedusi, P., Hupp, D., Arbenz, P., Krause, R.: A parallel multigrid solver for time-periodic incompressible Navier–Stokes equations in 3d. In: Karasözen, B., Manguoglu, M., Tezer-Sezgin, M., Göktepe, S., Ugur, Ö. (eds.) Numerical Mathematics and Advanced Applications – ENUMATH 2015. Springer, Ankara (2016)Google Scholar
  4. 4.
    Corporation, I.: Enhanced Intel®; SpeedStep®; Technology for the Intel®; Pentium®; M Processor. White Paper (2004). http://download.intel.com/design/network/papers/30117401.pdf
  5. 5.
    Dahmen, W., DeVore, R., Grasedyck, L., Süli, E.: Tensor-sparsity of solutions to high-dimensional elliptic partial differential equations. Found. Comput. Math. 1–62 (2015). http://dx.doi.org/10.1007/s10208-015-9265-9
  6. 6.
    Dick, B., Vogel, A., Khabi, D., Rupp, M., Küster, U., Wittum, G.: Utilization of empirically determined energy-optimal CPU-frequencies in a numerical simulation code. Comput. Vis. Sci. 17 (2), 89–97 (2015). http://dx.doi.org/10.1007/s00791-015-0251-1 MathSciNetCrossRefGoogle Scholar
  7. 7.
    Emmett, M., Minion, M.L.: Toward an efficient parallel in time method for partial differential equations. Commun. Appl. Math. Comput. Sci. 7, 105–132 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Grasedyck, L.: Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal. Appl. 31, 2029–2054 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Grasedyck, L., Kluge, M., Krämer, S.: Variants of alternating least squares tensor completion in the tensor train format. SIAM J. Sci. Comput. 37 (5), A2424–A2450 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Grasedyck, L., Kriemann, R., Löbbert, C., Nägel, A., Wittum, G., Xylouris, K.: Parallel tensor sampling in the hierarchical tucker format. Comput. Vis. Sci. 17 (2), 67–78 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hackbusch, W., Kühn, S.: A new scheme for the tensor representation. J. Fourier Anal. Appl. 15 (5), 706–722 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Heisig, M., Lieckfeldt, R., Wittum, G., Mazurkevich, G., Lee, G.: Non steady-state descriptions of drug permeation through stratum corneum. I. The biphasic brick-and-mortar model. Pharm. Res. 13 (3), 421–426 (1996)Google Scholar
  13. 13.
    Hoffer, M., Poliwoda, C., Wittum, G.: Visual reflection library: a framework for declarative gui programming on the java platform. Comput. Vis. Sci. 16 (4), 181–192 (2013)CrossRefGoogle Scholar
  14. 14.
    Mazouz, A., Laurent, A., Benoît, P., Jalby, W.: Evaluation of CPU frequency transition latency. Comput. Sci. 29 (3–4), 187–195 (2014). http://dx.doi.org/10.1007/s00450-013-0240-x Google Scholar
  15. 15.
    Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Hege, H.C., Polthier, K. (eds.) Visualization and Mathematics III, pp. 35–57. Springer, Berlin (2003)CrossRefGoogle Scholar
  16. 16.
    Minion, M.L., Speck, R., Bolten, M., Emmett, M., Ruprecht, D.: Interweaving PFASST and parallel multigrid. SIAM J. Sci. Comput. 37, S244–S263 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Mitragotri, S., Anissimov, Y.G., Bunge, A.L., Frasch, H.F., Guy, R.H., Hadgraft, J., Kasting, G.B., Lane, M.E., Roberts, M.S.: Mathematical models of skin permeability: an overview. Int. J. Pharm. 418 (1), 115–129 (2011)CrossRefGoogle Scholar
  18. 18.
    Naegel, A., Heisig, M., Wittum, G.: Detailed modeling of skin penetration – an overview. Adv. Drug Delivery Rev. 65 (2), 191–207 (2013). http://www.sciencedirect.com/science/article/pii/S0169409X12003559. Modeling the human skin barrier – towards a better understanding of dermal absorption
  19. 19.
    Nägel, A., Schulz, V., Siebenborn, M., Wittum, G.: Scalable shape optimization methods for structured inverse modeling in 3D diffusive processes. Comput. Vis. Sci. 17 (2), 79–88 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Nägel, A., Heisig, M., Wittum, G.: A comparison of two- and three-dimensional models for the simulation of the permeability of human stratum corneum. Eur. J. Pharm. Biopharm. 72 (2), 332–338 (2009)CrossRefGoogle Scholar
  21. 21.
    Reiter, S., Vogel, A., Heppner, I., Rupp, M., Wittum, G.: A massively parallel geometric multigrid solver on hierarchically distributed grids. Comput. Vis. Sci. 16 (4), 151–164 (2013). http://dx.doi.org/10.1007/s00791-014-0231-x CrossRefGoogle Scholar
  22. 22.
    Schulz, V.: A Riemannian view on shape optimization. Found. Comput. Math. 14, 483–501 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Schulz, V., Siebenborn, M.: Computational comparison of surface metrics for PDE constrained shape optimization. Comput. Methods Appl. Math. (submitted) (2015). arxiv.org/abs/1509.08601
  24. 24.
    Schulz, V., Siebenborn, M., Welker, K.: A novel Steklov-Poincaré type metric for efficient PDE constrained optimization in shape spaces. SIAM J. Optim. (submitted) (2015). arxiv.org/abs/1506.02244
  25. 25.
    Schulz, V., Siebenborn, M., Welker, K.: Structured inverse modeling in parabolic diffusion problems. SIAM J. Control Optim. 53 (6), 3319–3338 (2015). arXiv.org/abs/1409.3464
  26. 26.
    Speck, R., Ruprecht, D., Emmett, M., Minion, M.L., Bolten, M., Krause, R.: A multi-level spectral deferred correction method. BIT Numer. Math. 55, 843–867 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Speck, R., Ruprecht, D., Minion, M., Emmett, M., Krause, R.: Inexact spectral deferred corrections. In: Domain Decomposition Methods in Science and Engineering XXII. Lecture Notes in Computational Science and Engineering, vol. 104, pp. 127–133. Springer, Cham (2015)Google Scholar
  28. 28.
    Vogel, A., Reiter, S., Rupp, M., Nägel, A., Wittum, G.: UG4: a novel flexible software system for simulating PDE based models on high performance computers. Comput. Vis. Sci. 16 (4), 165–179 (2013). http://dx.doi.org/10.1007/s00791-014-0232-9 CrossRefGoogle Scholar
  29. 29.
    Wittum, G.: Editorial: algorithmic requirements for HPC. Comput. Vis. Sci. 17 (2), 65–66 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Lars Grasedyck
    • 1
    Email author
  • Christian Löbbert
    • 1
  • Gabriel Wittum
    • 2
  • Arne Nägel
    • 2
  • Volker Schulz
    • 3
  • Martin Siebenborn
    • 3
  • Rolf Krause
    • 4
  • Pietro Benedusi
    • 4
  • Uwe Küster
    • 5
  • Björn Dick
    • 5
  1. 1.IGPMRWTH AachenAachenGermany
  2. 2.G-CSCUniversity of FrankfurtFrankfurtGermany
  3. 3.University of TrierTrierGermany
  4. 4.ICSUniversity of LuganoLuganoGermany
  5. 5.HLRSUniversity of StuttgartStuttgartGermany

Personalised recommendations