Advertisement

Partitioned Fluid–Structure–Acoustics Interaction on Distributed Data: Numerical Results and Visualization

  • David Blom
  • Thomas Ertl
  • Oliver Fernandes
  • Steffen Frey
  • Harald Klimach
  • Verena KruppEmail author
  • Miriam Mehl
  • Sabine Roller
  • Dörte C. Sternel
  • Benjamin Uekermann
  • Tilo Winter
  • Alexander van Zuijlen
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 113)

Abstract

We present a coupled simulation approach for fluid–structure–acoustic interactions (FSAI) as an example for strongly surface coupled multi-physics problems. In addition to the multi-physics character, FSAI feature multi-scale properties as a further challenge. In our partitioned approach, the problem is split into spatially separated subdomains interacting via coupling surfaces. Within each subdomain, scalable, single-physics solvers are used to solve the respective equation systems. The surface coupling between them is realized with the scalable open-source coupling tool preCICE described in the “Partitioned Fluid–Structure–Acoustics Interaction on Distributed Data: Coupling via preCICE”. We show how this approach enables the use of existing solvers and present the overall scaling behavior for a three-dimensional test case with a bending tower generating acoustic waves. We run this simulation with different solvers demonstrating the performance of various solvers and the flexibility of the partitioned approach with the coupling tool preCICE. An efficient and scalable in-situ visualization reducing the amount of data in place at the simulation processors before sending them over the network or to a file system completes the simulation environment.

Keywords

Wind Turbine Incompressible Flow Discontinuous Galerkin Structure Solver Fluid Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The financial support of the priority program 1648 Software for Exascale Computing (www.sppexa.de) of the German Research Foundation and of the Institute for Advanced Study (www.tum-ias.de) of the Technical University of Munich is thankfully acknowledged.

References

  1. 1.
    Blom, D.S., Krupp, V., van Zuijlen, A.H., Klimach, H., Roller, S., Bijl, H.: On parallel scalability aspects of strongly coupled partitioned fluid-structure-acoustics interaction. In: VI International Conference on Computational Methods for Coupled Problems in Science and Engineering – COUPLED PROBLEMS 2015 (2015)Google Scholar
  2. 2.
    Bungartz, H.J., Klimach, H., Krupp, V., Lindner, F., Mehl, M., Roller, S., Uekermann, B.: Fluid-acoustics interaction on massively parallel systems. In: Mehl, M., Bischoff, M., Schäfer, M. (eds.) International Workshop on Computational Engineering CE 2014. Lecture Notes in Computational Science and Engineering, pp. 151–165. Springer, Heidelberg/Berlin (2015)Google Scholar
  3. 3.
    Cardiff, P., Karač, A., Ivanković, A.: A large strain finite volume method for orthotropic bodies with general material orientations. Comput. Method. Appl. Mech. Eng. 268, 318–335 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Darwish, M., Moukalled, F.: A fully coupled Navier-Stokes solver for fluid flow at all speeds. Numer. Heat Tr A.-Appl. 65 (5), 410–444 (2014)CrossRefGoogle Scholar
  5. 5.
    Darwish, M., Sraj, I., Moukalled, F.: A coupled finite volume solver for the solution of incompressible flows on unstructured grids. J. Comput. Phys. 228 (1), 180–201 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    FASTEST-Manual: Fachgebiet fr Numerische Berechnungsverfahren im Maschinenbau, Technische Universitt Darmstadt, 1st edn. (2005)Google Scholar
  7. 7.
    Fernandes, O., Frey, S., Sadlo, F., Ertl, T.: Space-time volumetric depth images for in-situ visualization. In: Proceedings of IEEE 4th Symposium on Large Data Analysis and Visualization (LDAV), pp. 59–65 (2014)Google Scholar
  8. 8.
    Frey, S., Sadlo, F., Ertl, T.: Explorable volumetric depth images from raycasting. In: Proceedings of the Conference on Graphics, Patterns and Images, pp. 123–130 (2013)Google Scholar
  9. 9.
    Hardin, J., Pope, D.: An acoustic/viscous splitting technique for computational aeroacoustics. Theor. Comput. Fluid Dyn. 6, 323–340 (1994)CrossRefzbMATHGoogle Scholar
  10. 10.
    Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, 1 edn. Springer, New York (2007)zbMATHGoogle Scholar
  11. 11.
    Kornhaas, M., Schäfer, M., Sternel, D.: Efficient numerical simulation of aeroacoustics for low mach number flows interacting with structures. Comput. Mech. 55 (6), 1143–1154 (2015). http://dx.doi.org/10.1007/s00466-014-1114-1 CrossRefzbMATHGoogle Scholar
  12. 12.
    Lighthill, M.: On sound generated aerodynamically. I. General theory. Proc. R. Soc. A 211, 564–587 (1952)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Newmark, N.M.: A method of computation for structural dynamics. J. Eng. Mech. Div.-Asce. 85 (7), 67–94 (1959)Google Scholar
  14. 14.
    Roller, S., Bernsdorf, J., Klimach, H., Hasert, M., Harlacher, D., Cakircali, M., Zimny, S., Masilamani, K., Didinger, L., Zudrop, J.: An adaptable simulation framework based on a linearized octree. In: Resch, M., Wang, X., Bez, W., Focht, E., Kobayashi, H., Roller, S. (eds.) High Performance Computing on Vector Systems 2011, pp. 93–105. Springer, Berlin/Heidelberg (2012)Google Scholar
  15. 15.
    Shen, W.Z., Sørensen, J.N.: Aeroacoustic modelling of low-speed flows. Theor. Comput. Fluid Dyn. 13, 271–289 (1999)CrossRefzbMATHGoogle Scholar
  16. 16.
    Shen, W., Sørensen, J.: Comment on the aeroacoustic formulation of Hardin and Pope. AIAA J. 37 (1), 141–143 (1999)CrossRefGoogle Scholar
  17. 17.
    Taylor, R.L.: FEAP – A Finite Element Analysis Program – Version 7.5 User Manual. University of California (2003). citeseer.ist.psu.edu/taylor03feap.html
  18. 18.
    Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, 2 edn. Springer, Berlin/Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  19. 19.
    Uekermann, B., Bungartz, H.J., Gatzhammer, B., Mehl, M.: A parallel, black-box coupling for fluid-structure interaction. In: Idelsohn, S., Papadrakakis, M., Schrefler, B. (eds.) Computational Methods for Coupled Problems in Science and Engineering, COUPLED PROBLEMS 2013. Stanta Eulalia, Ibiza (2013). http://congress.cimne.com/coupled2013/proceedings/full/p559.pdf Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • David Blom
    • 1
  • Thomas Ertl
    • 5
  • Oliver Fernandes
    • 5
  • Steffen Frey
    • 5
  • Harald Klimach
    • 3
  • Verena Krupp
    • 3
    Email author
  • Miriam Mehl
    • 4
  • Sabine Roller
    • 3
  • Dörte C. Sternel
    • 6
  • Benjamin Uekermann
    • 2
  • Tilo Winter
    • 7
  • Alexander van Zuijlen
    • 1
  1. 1.Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands
  2. 2.Scientific Computing in Computer ScienceTechnical University of MunichMünchenGermany
  3. 3.Simulation Techniques and Scientific ComputingUniversity of SiegenSiegenGermany
  4. 4.Institute for Parallel and Distributed SystemsUniversity of StuttgartStuttgartGermany
  5. 5.VISUSUniversity of StuttgartStuttgartGermany
  6. 6.Institut for Scientific ComputingTU DarmstadtDarmstadtGermany
  7. 7.Institute of Numerical Methods in Mechanical EngineeringTU DarmstadtDarmstadtGermany

Personalised recommendations