Advertisement

Partitioned Fluid–Structure–Acoustics Interaction on Distributed Data: Coupling via preCICE

  • Hans-Joachim Bungartz
  • Florian Lindner
  • Miriam Mehl
  • Klaudius Scheufele
  • Alexander Shukaev
  • Benjamin UekermannEmail author
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 113)

Abstract

One of the great prospects of exascale computing is to simulate challenging highly complex multi-physics scenarios with different length and time scales. A modular approach re-using existing software for the single-physics model parts has great advantages regarding flexibility and software development costs. At the same time, it poses challenges in terms of numerical stability and parallel scalability. The coupling library preCICE provides communication, data mapping, and coupling numerics for surface-coupled multi-physics applications in a highly modular way. We recapitulate the numerical methods but focus particularly on their parallel implementation. The numerical results for an artificial coupling interface show a very small runtime of the coupling compared to typical solver runtimes and a good parallel scalability on a number of cores corresponding to a massively parallel simulation for an actual, coupled simulation. Further results for actual application scenarios from the field of fluid–structure–acoustic interactions are presented in the next chapter.

Keywords

Radial Basis Function Near Neighbor Arbitrarily Lagrangian Eulerian Consistent Mapping Coupling Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The financial support of the priority program 1648 Software for Exascale Computing (www.sppexa.de) of the German Research Foundation and of the Institute for Advanced Study (www.tum-ias.de) of the Technical University of Munich as well as provided computing time on the SuperMUC at the Leibniz Supercomputing Centre, are thankfully acknowledged.

References

  1. 1.
    Anderson, D.G.: Iterative procedures for nonlinear integral equations. J. ACM 12 (4), 547–560 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Rupp, K., Smith, B.F., Zampini, S., Zhang, H.: PETSc users manual. Tech. Rep. ANL-95/11 - Revision 3.6, Argonne National Laboratory (2015). http://www.mcs.anl.gov/petsc
  3. 3.
    de Boer, A., van Zuijlen, A., Bijl, H.: Comparison of conservative and consistent approaches for the coupling of non-matching meshes. Comput. Method. Appl. Mech. Eng. 197 (49–50), 4284–4297 (2008).Google Scholar
  4. 4.
    Buhmann, M.: Radial basis functions. Acta Numer. 9 (January 2000), 1–38 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bungartz, H.J., Lindner, F., Gatzhammer, B., Mehl, M., Scheufele, K., Shukaev, A., Uekermann, B.: preCICE – a fully parallel library for multi-physics surface coupling. Comput. Fliuds (2016)Google Scholar
  6. 6.
    Bungartz, H.J., Lindner, F., Mehl, M., Uekermann, B.: A plug-and-play coupling approach for parallel multi-field simulations. Comput. Mech. 55 (6), 1119–1129 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Deparis, S., Forti, D., Quarteroni, A.: A rescaled localized radial basis function interpolation on non-cartesian and nonconforming grids. SIAM J. Sci. Comput. 36 (6), A2745–A2762 (2014). http://dx.doi.org/10.1137/130947179 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fang, H.R., Saad, Y.: Two classes of multisecant methods for nonlinear acceleration. Numer. Linear Algebra 16, 197–221 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gatzhammer, B.: Efficient and flexible partitioned simulation of fluid-structure interactions. Phd thesis, Technische Universität München (2014)Google Scholar
  10. 10.
    Keyes, D., McInnes, L.C., Woodward, C.S., Gropp, W., Myra, E., Pernice, M., Bell, J., Brown, J., Clo, A., Connors, J., Constantinescu, E., Estep, D., Evans, K., Farhat, C., Hakim, A., Hammond, G., Hansen, G., Hill, J., Isaac, T., Jiao, X., Jordan, K., Kaushik, D., Kaxiras, E., Koniges, A., Lee, K., Lott, A., Lu, Q., Magerlein, J., Maxwell, R., McCourt, M., Mehl, M., Pawloski, R., Randles, A., Reynolds, D., Riviere, B., Rüde, U., Scheibe, T., Shadid, J., Sheehan, B., Shephard, M., Siegel, A., Smith, B., Tang, X., Wilson, C., Wohlmuth, B.: Multiphysics simulations: challenges and opportunities. Int. J. High Perform. Comput. Appl. 27 (1), 4–83 (2012)Google Scholar
  11. 11.
    Lindner, F., Mehl, M., Scheufele, K., Uekermann, B.: A comparison of various quasi-Newton schemes for partitioned fluid-structure interaction. In: Proceedings of 6th International Conference on Computational Methods for Coupled Problems in Science and Engineering, Venice, pp. 1–12 (2015)Google Scholar
  12. 12.
    Loffeld, J., Woodward, C.: Considerations and the implementation and use of Anderson acceleration on parallel computers. In: Advances in the Mathematical Sciences: Research from the 2015 Association for Women in Mathematics Symposium. AWM Springer Series (2016)Google Scholar
  13. 13.
    Plimpton, S.J., Hendrickson, B., Stewart, J.R.: A parallel rendezvous algorithm for interpolation between multiple grids. J. Parallel Distrib. Comput. 64 (2), 266–276 (2004)CrossRefzbMATHGoogle Scholar
  14. 14.
    Shukaev, A.K.: A fully parallel process-to-process intercommunication technique for preCICE. Master’s thesis, Institut für Informatik, Technische Universität München (2015)Google Scholar
  15. 15.
    Slattery, S., Wilson, P., Pawlowski, R.: The data transfer kit: a geometric rendezvous-based tool for multiphysics data transfer. In: International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering (M&C 2013), pp. 5–9 (2013)Google Scholar
  16. 16.
    Smith, M.J., Cesnik, C.E.S., Hodges, D.H.: Evaluation of algorithms suitable for data transfer between noncontiguous meshes. J. Aerospace Eng. 13 (2), 52–58 (2000)CrossRefGoogle Scholar
  17. 17.
    Uekermann, B., Bungartz, H.J., Gatzhammer, B., Mehl, M.: A parallel, black-box coupling for fluid-structure interaction. In: Idelsohn, S., Papadrakakis, M., Schrefler, B. (eds.) Computational Methods for Coupled Problems in Science and Engineering, COUPLED PROBLEMS 2013. Stanta Eulalia, Ibiza (2013). http://congress.cimne.com/coupled2013/proceedings/full/p559.pdf Google Scholar
  18. 18.
    Vierendeels, J., Degroote, J., Annerel, S., Haelterman, R.: Stability issues in partitioned FSI calculations. In: Bungartz, H.J., Mehl, M., Schäfer, M. (eds.) Fluid Structure Interaction II. Lecture Notes in Computational Science and Engineering, pp. 83–102. Springer, Berlin/Heidelberg (2010). http://link.springer.com/chapter/10.1007/978-3-642-14206-2_4
  19. 19.
    Walker, H.F., Ni, P.: Anderson acceleration for fixed-point iterations. SIAM J. Numer. Anal. 49 (4), 1715–1735 (Aug 2011). http://dx.doi.org/10.1137/10078356X
  20. 20.
    Yokota, R., Barba, L.A., Knepley, M.G.: PetRBF – a parallel O(N) algorithm for radial basis function interpolation with Gaussians. Comput. Method. Appl. Mech. Eng. 199 (25–28), 1793–1804 (2010).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Hans-Joachim Bungartz
    • 1
  • Florian Lindner
    • 2
  • Miriam Mehl
    • 2
  • Klaudius Scheufele
    • 2
  • Alexander Shukaev
    • 1
  • Benjamin Uekermann
    • 1
    Email author
  1. 1.Scientific Computing in Computer ScienceTechnical University of MunichMünchenGermany
  2. 2.Institute for Parallel and Distributed SystemsUniversity of StuttgartStuttgartGermany

Personalised recommendations