Skip to main content

Maximal Inequalities for Dependent Random Variables

  • Conference paper
  • First Online:
High Dimensional Probability VII

Part of the book series: Progress in Probability ((PRPR,volume 71))

  • 1248 Accesses

Abstract

Maximal inequalities play a crucial role in many probabilistic limit theorem; for instance, the law of large numbers, the law of the iterated logarithm, the martingale limit theorem and the central limit theorem. Let X 1, X 2,  be random variables with partial sums S k  = X 1 + ⋯ + X k . Then a maximal inequality gives conditions ensuring that the maximal partial sum M n  = max1 ≤ i ≤ n S i is of the same order as the last sum S n . In the literature there exist large number of maximal inequalities if X 1, X 2,  are independent but much fewer for dependent random variables. In this paper, I shall focus on random variables X 1, X 2,  having some weak dependence properties; such as positive and negative In-correlation, mixing conditions and weak martingale conditions.

Mathematics Subject Classification (2010). Primary 60E15; Secondary 60F05

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J.-M. Bardet, P. Doukhan, G. Lang, N. Ragache, Dependent Lindeberg central limit theorem and some applications. ESAIM: Probab. Stat. 12, 154–172 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. R.C. Bradley, On quantiles and the central limit theorem question for strongly mixing sequences. J. Theor. Probab. 10, 507–555 (1977)

    Article  MATH  Google Scholar 

  3. R.C. Bradley, Basic properties of strong mixing conditions. A survey and open questions. Probab. Surv. 2, 107–144 (2005)

    Article  MATH  Google Scholar 

  4. K.P. Choi, M. Klass, Some best possible prophet inequalities for convex functions of sums of independent variables and unordered martingale difference sequences. Ann. Probab. 25, 803–811 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Doukhan, A new weak dependence condition and applications to moment inequalities. Stoch. Proc. Appl. 84, 313–342 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Doukhan, The notion of ψ-weak dependence and its application to bootstrapping time series. Probab. Surv. 5, 146–168 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. J.D. Esay, F. Proschan, D.W. Walkup, Association of random variables with applications. Ann. Math. Stat. 38, 1466–1474 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Hoffmann-Jørgensen, Probability with a View Towards Statistics, vol. 1 (Chapman & Hall, New York, 1994)

    Book  MATH  Google Scholar 

  9. J. Hoffmann-Jørgensen, Stochastic inequalities and perfect independence, in High Dimensional Probability III. Progress in Probability, vol. 55 (Birkhäuser Verlag, Basel, 2003), pp. 3–34

    Google Scholar 

  10. J. Hoffmann-Jørgensen, Slepian’s inequality, modularity and integral orderings. High Dimensional Probability VI. Progress in Probability, vol. 66 (Birkhäuser Verlag, Basel, 2013), pp. 19–53

    Google Scholar 

  11. K. Joag-Dev, F. Proschan, Negative association of random variables with applications. Ann. Stat. 11, 286–295 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Kevei, D. Mason, A note on a maximal Bernstein inequality. Bernoulli 17, 1054–1062 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Kevei, D. Mason, A more general maximal Bernstein-type inequality. High Dimensional Probability VI. Progress in Probability, vol. 66 (Birkhäuser Verlag, Basel, 2013), pp. 55–62

    Google Scholar 

  14. M. Ledoux, M. Talagrand, Probability in Banach Spaces (Springer, Berlin, 1991)

    Book  MATH  Google Scholar 

  15. E.L. Lehmann, Some concepts of dependence. Ann. Math. Stat. 37, 1137–1158 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  16. D.E. Menchoff, Sur les séries orthogonales. (Premier partie). Fund. Math. 4, 92–105 (1923)

    Google Scholar 

  17. F. Moricz, Moment inequalities and strong law of large numbers. Z. Wahrsch. Verw. Begiete 35, 299–314 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  18. F. Moricz, R.J. Serfling, W.F. Stout, Moment and probability bounds with quasi-superadditive structure for the maximum partial sum. Ann. Probab. 10, 1032–1040 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Müller, D. Stoyan, Comparison Methods for Stochastic Models and Risks (Wiley, New York, 2002)

    MATH  Google Scholar 

  20. C.M. Newman, A.L. Wright, Associated random variables and martingale inequalities. Z. Wahrsch. Verw. Gebiete 56, 361–371 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Rademacher, Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen. Math. Ann. 87, 112–138 (1922)

    Article  MathSciNet  MATH  Google Scholar 

  22. G. Xing, Y. Shanchao, A. Liu, Exponential inequalities for positively associated random variables and applications. J. Inequal. Appl. (2008). (Article ID 385362)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jørgen Hoffmann-Jørgensen .

Editor information

Editors and Affiliations

Appendix

Appendix

In this appendix, I shall give a purely analytic solution to a certain recursive, functional inequality which is closely linked to the Rademacher-Menchoff inequalities of Sect. 2. But first let me prove the following simple lemma.

Lemma A.1

Let \((g_{i,j})_{(i,j)\in \boldsymbol{\Delta }_{0}}\) be a triangular schemes of non-negative numbers. Let \((i,j) \in \boldsymbol{ \Delta }_{2}\) be a given pair and let a > 0 and h ≥ 0 be given numbers satisfying

$$\displaystyle{g_{i,i} \vee (a\,g_{j,j}) \leq h\ \text{ and }\ \max _{i<k<k}\,(g_{i,k} + g_{k,j}) \leq (1 + \tfrac{1} {a})\,h\,.}$$

Then we have \(\min \limits _{i<k\leq j}(g_{i,k-1} \vee (a\,g_{k,j})) \leq h\) .

Proof

I shall split the proof in three cases:

Case 1::

g i, j−1 ≤ h. Since ag j, j  ≤ h, we have g i, j−1 ∨ (ag j, j ) ≤ h.

Case 2::

g i, i+1 ≤ h < g i, j−1. Then there exists an integer i < k < j such that g i, k−1 ≤ h ≤ g i, k and since \(h + g_{k.j} \leq g_{i,k} + g_{k,j} \leq (1 + \frac{1} {a})\,h\), we have g i, k−1 ∨ (ag k, j ) ≤ h.

Case 3::

g i, i+1 > h. Since j ≥ 2, we have i < i + 1 < j and so we have \(h + g_{i+1,j} \leq g_{i,i+1} + g_{i+1,j} \leq (1 + \frac{1} {a})\,h\) and since g i, i  ≤ h, we have g i, i ∨ (ag i+1, j ) ≤ h.

Since the three cases exhaust all possibilities, we see that there exists an integer i < k ≤ j such that g i, k−1 ∨ (ag k, j ) ≤ h. □ 

Proposition A.2

Let \(p,q \in \mathbb{R}_{+}\) be given numbers and let \(D \subseteq \mathbb{R}_{+}\) be a non-empty set such that pt ∈ D and qt ∈ D for all t ∈ D. Let \(\Gamma: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}\) , be an increasing homogeneous function and set \(\Gamma (x,\infty ) = \Gamma (\infty,x) = \infty\) for all x ∈ [0,∞]. Let A i,j ,B i,j ,V i,j : D → [0,∞] be given functions for \((i,j) \in \boldsymbol{ \Delta }_{0}\) and let \(h: \mathbb{N}_{0} \rightarrow \mathbb{R}_{+}\) and \(\xi: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}\) be increasing functions such that ξ(0) = 0 and

  1. (a)

    \(A_{i,j}(t) \leq \Gamma (A_{k,j}(\,pt) + A_{i,k-1}(qt),B_{i,k}(t))\quad \forall (i,k,j,t) \in \nabla \times D\,,\)

  2. (b)

    \(A_{i,i}(t) \leq h(0)\,V _{i,i}(t)\ \text{ and }\ V _{i,j}(t) \leq V _{i,j+1}(t) <\infty \quad \,\forall \,(i,j,t) \in \boldsymbol{ \Delta }_{0} \times D\,,\)

  3. (c)

    \(B_{i,j}(t) \leq h(\xi (\,j - i))\,V _{i,j}(t)\quad \forall \,(i,j,t) \in \boldsymbol{ \Delta }_{0} \times D\,.\)

Then we have A i,j (t) < ∞ and B i,j (t) < ∞ for all \((i,j,t) \in \boldsymbol{ \Delta }_{0} \times D\) . Let s ≥ 0 be a given number satisfying \(h(0) \leq \Gamma (s\,h(0),h(1))\) and let us define

$$\displaystyle{ \Upsilon _{s} =\{ (i,j,t) \in \boldsymbol{ \Delta }_{1} \times D\mid h_{s}^{\Gamma }(\xi (\,j - i))\,V _{ i,j}(t) <A_{i,j}(t)\}\,. }$$

Then \(h_{s}^{\Gamma }\) is increasing and if

  1. (d)

    \(\min \limits _{k\in D_{i,j}^{\xi }}\,(V _{i,k-1}(qt) + V _{k,j}(\,pt)) \leq s\,V _{i,j}(t)\quad \forall \,(i,j,t) \in \Upsilon _{r}\,,\)

then we have \(A_{i,j}(t) \leq h_{s}^{\Gamma }(\xi (\,j - i))\,V _{i,j}(t)\) for all \((i,j,t) \in \boldsymbol{ \Delta }_{0} \times D\) .

Proof

By (b) and (c), we have A i, i (t) <  for all \((i,t) \in \mathbb{N}_{0} \times D\) and B i, j (t) <  for all \((i,j,t) \in \boldsymbol{ \Delta }_{0} \times D\). Let n ≥ 0 be a given integer such that A i, i+n (t) <  for all \((i,t) \in \mathbb{N}_{0} \times D\) and let \((i,t) \in \mathbb{N}_{0} \times D\) be given. Since pt ∈ D and qt ∈ D, we have A i, i+n (qt) + A i+n+1, i+n+1( pt) < . Hence, by (a), we see that A i, i+n+1(t) <  and so by induction, we have A i, j (t) <  for all \((i,j,t) \in \boldsymbol{ \Delta }_{0} \times D\).

Suppose that \(h(0) \leq \Gamma (s\,h(0),h(1))\). By (2.6), we have \(h_{s}^{\Gamma }(0) = h(0) \leq \Gamma (s\,h(0),h(1)) = h_{r}^{\Gamma }(1)\). Let n ≥ 1 be a given integer such that \(h_{s}^{\Gamma }(n - 1) \leq h_{s}^{\Gamma }(n)\). By (2.6), we have \(h_{s}^{\Gamma }(n + 1) = \Gamma (s\,h_{s}^{\Gamma }(n),h(n + 1))\) and since \(\Gamma\) and h are increasing we have \(h_{s}^{\Gamma }(n + 1) \geq \Gamma (s\,h_{s}^{\Gamma }(n - 1)\,,h(n)) = h_{s}^{\Gamma }(n)\). So by induction, we see that \(h_{s}^{\Gamma }\) is increasing.

Suppose in addition that (d) holds. Since ξ(0) = 0, we have \(h(0) = h_{s}^{\Gamma }(\xi (0))\) and so by (b) we have \(A_{i,j}(t) \leq h_{s}^{\Gamma }(\xi (\,j - i))\,V _{i,j}(t)\) for all \((i,j,t) \in \boldsymbol{ \Delta }^{0} \times D\). Let n ≥ 0 be a given integer such that \(A_{i,j}(t) \leq f_{s}^{\Gamma }(\xi (\,j - i))\,V _{i,j}(t)\) for all \((i,j,t) \in \boldsymbol{ \Delta }^{n} \times D\). Let \((i,j,t) \in \boldsymbol{ \Delta }^{n+1} \times D\) be given and let me show that \(A_{i,j}(t) \leq h_{s}^{\Gamma }(\xi (\,j - i))\,V _{i,j}(t)\).

If ji ≤ n, this follows from the induction hypothesis and if \(A_{i,j}(t) \leq h_{s}^{\Gamma }(\xi (\,j - i))\,V _{i,j}(t)\), this holds trivially. So suppose that ji = n + 1 and \(h_{s}^{\Gamma }(\xi (\,j - i))\,V _{i,j}(t) <A_{i,j}(t)\) and set ν = ξ(n + 1). Since ji = n + 1 ≥ 1, we have \((i,j,t) \in \Upsilon _{s}\). Recall that min k ∈ ∅a k  =  and V i, j (t) < . So by (d) there exists k ∈ D i, j ξ such that V i, k−1(qt) + V k, j ( pt) ≤ sV i, j (t).

Since k ∈ D i, j ξ, we have ξ(jk) ∨ξ(ki − 1) ≤ ν − 1 and since \(h_{s}^{\Gamma }\) is increasing, we have \(h_{s}^{\Gamma }(\xi (\,j - k)) \leq h_{s}^{\Gamma }(\nu -1)\) and \(h_{s}^{\Gamma }(\xi (k - i - 1)) \leq h_{s}^{\Gamma }(\nu -1)\). Since h and ξ are increasing and ki ≤ n + 1, we have h(ξ(ki)) ≤ h(ν) and since i < k ≤ j and n + 1 = ji, we have \((i,k - 1) \in \boldsymbol{ \Delta }^{n}\) and \((k,j) \in \boldsymbol{ \Delta }^{n}\). Since t ∈ D, we have pt, qt ∈ D and so by induction hypothesis, we have \(A_{i,k-1}(qt) \leq h_{s}^{\Gamma }(\nu -1))\,V _{i,k-1}(qt)\) and \(A_{k,j}(\,pt) \leq h_{s}^{\Gamma }(\nu -1)\,V _{k,j}(\,pt)\). Since V i, k−1(qt) + V k, j ( pt)) ≤ sV i, j (t), we have

$$\displaystyle{A_{i,k-1}(qt) + A_{k,j}(\,pt) \leq s\,h_{s}^{\Gamma }(\nu -1)\,V _{ i,j}(t)\,.}$$

By (c), we have B i, k (t) ≤ h(ξ(ki)) V i, k (t) and since ξ and h are increasing and ki ≤ ji = n + 1, we have h(ξ(ki)) ≤ h(ν). So we have B i, k (t) ≤ h(ν) V i, k (t) and by (a) and homogeneity and monotonicity of \(\Gamma\) we have

$$\displaystyle\begin{array}{rcl} A_{i,j}(t)& \leq & \Gamma (A_{i,k-1}(qt) + A_{k,j}(\,pt),B_{i,k}(t)) {}\\ & \leq & \Gamma (s\,h_{s}^{\Gamma }(\nu -1),\,h(\nu ))\,V _{ i,j}(t) = h_{s}^{\Gamma }(\nu )\,V _{ i,j}(t)\,. {}\\ \end{array}$$

Hence, by induction we see that \(A_{i,j}(t) \leq h_{s}^{\Gamma }(\xi (\,j - i))\,V _{i,j}(t)\) for all \((i,j,t) \in \boldsymbol{ \Delta }_{0} \times D\). □ 

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Hoffmann-Jørgensen, J. (2016). Maximal Inequalities for Dependent Random Variables. In: Houdré, C., Mason, D., Reynaud-Bouret, P., Rosiński, J. (eds) High Dimensional Probability VII. Progress in Probability, vol 71. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-40519-3_4

Download citation

Publish with us

Policies and ethics