Skip to main content

Erdős-Rényi-Type Functional Limit Laws for Renewal Processes

  • Conference paper
  • First Online:
High Dimensional Probability VII

Part of the book series: Progress in Probability ((PRPR,volume 71))

  • 1108 Accesses

Abstract

We prove functional limit laws for Erdős-Rényi-type increments of renewal processes.

Mathematics Subject Classification (2010). Primary 60F15, 60F17; Secondary 60F10, 60K05

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.N. Bacro, P. Deheuvels, J. Steinebach, Exact convergence rates in Erdős–Rényi type theorems for renewal processes. Ann. Inst. Henri Poincaré 23, 195–207 (1987)

    MathSciNet  MATH  Google Scholar 

  2. P. Bártfai, Die Bestimmung der eu einem wiederkehrended Prozess gehörenden Verteilungsfunktion aus den mit Fehlern behafteten Daten einer einzigen Realisation. Stud. Sci. Math. Hung. 1, 161–168 (1966)

    MATH  Google Scholar 

  3. K.A. Borovkov, A functional form of the Erdős and Rényi law of large numbers. Theory Probab. Appl. 35, 762–766 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Stat. 23, 493–507 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  5. Y.S. Chow, H. Teicher, Probability Theory, Independence, Interchangeability, Martingales, 2nd edn. (Springer, New York, 1988)

    MATH  Google Scholar 

  6. P. Deheuvels, Functional Erdős-Rényi laws. Stud. Sci. Math. Hung. 26, 261–295 (1991)

    MathSciNet  MATH  Google Scholar 

  7. P. Deheuvels, L. Devroye, Limit laws of Erdős-Rényi-Shepp type. Ann. Probab. 15, 1363–1386 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Deheuvels, D.M. Mason, A tail empirical process approach to some nonstandard laws of the iterated logarithm. J. Theor. Probab. 4, 53–85 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Deheuvels, D.M. Mason, Functional laws of the iterated logarithm for the increments of empirical and quantile processes. Ann. Probab. 20, 1248–1287 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Deheuvels, J. Steinebach, Sharp rates for the increments of renewal processes. Ann. Probab. 17, 700–722 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Deheuvels, L. Devroye, J. Lynch, Exact convergence rate in the limit theorems of Erdős-Rényi and Shepp. Ann. Probab. 14, 209–223 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Erdős, A. Rényi, On a new law of large numbers. J. Analyse Math. 23, 103–111 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  13. W. Feller, An Introduction to Probability Theory and its Applications, vol. II (Wiley, New York, 1966)

    MATH  Google Scholar 

  14. G. Högnäs, Characterization of weak convergence of signed measures on [0, 1]. Math. Scand. 41, 175–184 (1977)

    MathSciNet  MATH  Google Scholar 

  15. T. Kawata, Fourier Analysis in Probability Theory (Academic Press, New York, 1972)

    MATH  Google Scholar 

  16. J.L. Kelley, General Topology (Springer, New York, 1955)

    MATH  Google Scholar 

  17. M.A. Krasnosel’skii, Ya.B. Rutickii, Convex Functionals and Orlicz Spaces (P. Noordhoff, Groningen, 1961)

    Google Scholar 

  18. J. Lynch, J. Sethuraman, Large deviations for processes with independent increments. Ann. Probab. 15, 610–627 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. M.M. Rao, Z.D. Ren, Theory of Orlicz Spaces (Marcel Dekker, New York, 1991)

    MATH  Google Scholar 

  20. W. Rudin, Real and Complex Analysis, 3rd edn. (McGraw-Hill, New York, 1987)

    MATH  Google Scholar 

  21. G.R. Sanchis, A functional limit theorem for Erdős and Rényi’s law of large numbers. Probab. Theory Relat. Fields 98, 1–5 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. G.R. Sanchis, A functional limit theorem for Erdős and Rényi’s law of large numbers - Addendum. Probab. Theory Relat. Fields 99, 475 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. L.A. Shepp, A limit law concerning moving averages. Ann. Math. Stat. 35, 424–428 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Steinebach, A strong law of Erdős-Rényi type for cumulative processes in renewal theory. J. Appl. Probab. 15, 96–111 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Steinebach, Improved Erdős-Rényi and strong approximation laws for increments of renewal processes. Ann. Probab. 14, 547–559 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  26. S.R.S. Varadhan, Asymptotic probabilities and differential equations. Comm. Pure Appl. Math. 19, 261–286 (1966)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the referee for a careful reading of our manuscript and insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Deheuvels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Deheuvels, P., Steinebach, J.G. (2016). Erdős-Rényi-Type Functional Limit Laws for Renewal Processes. In: Houdré, C., Mason, D., Reynaud-Bouret, P., Rosiński, J. (eds) High Dimensional Probability VII. Progress in Probability, vol 71. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-40519-3_10

Download citation

Publish with us

Policies and ethics