Advertisement

Towards Dynamic Business Process Management: Adapting Processes via Cloud-based Adaptation Processes

  • Roy OberhauserEmail author
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 257)

Abstract

Dynamic business process management (dBPM) is contingent on the practical viability of automated process adaptation techniques. Various approaches to support process adaptation have been investigated, yet they typically expect some level of manual interaction or involve some amalgamation of additional modeling paradigms or language extensions. Additionally, cross-cutting process adaptation concerns and a distributed and cloud-based process adaptation capability have not been adequately addressed. AProPro (Adapting Processes via Processes), a flexible and cloud-capable approach towards dBPM, supports adapting target processes using adaptation processes while retaining an intuitive and consistent imperative process paradigm. The evaluation consists of case studies in both a business and an engineering domain and demonstrates the approach in a distributed Adaptation-as-a-Service cloud setting. The results show the viability of the approach across various domains.

Keywords

Dynamic business process management Dynamic BPM Adaptive process-aware information systems PAIS Adaptive workflow management systems Process change patterns Aspect-oriented processes Cloud-based BPM Adaptation-as-a-service Web services 

Notes

Acknowledgments

The author thanks Florian Sorg for his assistance with the implementation and evaluation and Gregor Grambow for his assistance with the concept. This work was supported by AristaFlow and an AWS in Education Grant award.

References

  1. 1.
    Weske, M.: Business Process Management: Concepts, Languages, Architectures. Springer Science & Business Media, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Van Der Aalst, W., Van Hee, K.M.: Workflow Management: Models, Methods, and Systems. MIT press, Massachusetts (2004)Google Scholar
  3. 3.
    Reichert, M., Weber, B.: Enabling Flexibility in Process-aware Information Systems: Challenges, Methods, Technologies. Springer Science & Business Media, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Reichert, M., Dadam, P., Rinderle-Ma, S., Jurisch, M., Kreher, U., Göser, K.: Architecural principles and components of adaptive process management technology. In: PRIMIUM - Process Innovation for Enterprise Software. Lecture Notes in Informatics (LNI) (P-151), pp. 81–97. Koellen-Verlag (2009)Google Scholar
  5. 5.
    Russell, N., ter Hofstede, A.H.M., van der Aalst,W.M.P., Mulyar, N.: Workflow Control-Flow Patterns: A Revised View. BPM Center Report BPM-06-22 (2006)Google Scholar
  6. 6.
    Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support features–enhancing flexibility in process-aware information systems. Data Knowl. Eng. 66, 438–466 (2008)CrossRefGoogle Scholar
  7. 7.
    Grambow, G., Oberhauser, R., Reichert, M.: Employing semantically driven adaptation for amalgamating software quality assurance with process management. In: Proceedings of the 2nd International Conference on Adaptive and Self-adaptive Systems and Applications, pp. 58–67. IARIA XPS Press (2010)Google Scholar
  8. 8.
    Grambow, G., Oberhauser, R., Reichert, M.: Contextual injection of quality measures into software engineering processes. Int. J. Adv. Softw. 4(1 & 2), 76–99 (2011)Google Scholar
  9. 9.
    Grambow, G., Oberhauser, R., Reichert, M.: Event-driven exception handling for software engineering processes. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 414–426. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Grambow, G., Oberhauser, R., Reichert, M.: User-centric abstraction of workflow logic applied to software engineering processes. In: Bajec, M., Eder, J. (eds.) CAiSE Workshops 2012. LNBIP, vol. 112, pp. 307–321. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Oberhauser, R.: Adapting processes via adaptation processes - a flexible and cloud-capable adaptation approach for dynamic business process management. In: Proceedings of the Fifth International Symposium on Business Modeling and Software Design, pp. 9–18. SCITEPRESS (2015). ISBN 978-989-758-111-3, doi: 10.5220/0005885000090018
  12. 12.
    Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in workflow systems–a survey. Data Knowl. Eng. 50(1), 9–34 (2004)CrossRefGoogle Scholar
  13. 13.
    Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: Declare: full support for loosely-structured processes. In: Proceedings of the 11th IEEE International Enterprise Distributed Object Computing Conference (EDOC 2007), pp. 287–298. IEEE CPS (2007)Google Scholar
  14. 14.
    Van der Aalst, W.M., Weske, M., Grünbauer, D.: Case handling: a new paradigm for business process support. Data Knowl. Eng. 53(2), 129–162 (2005)CrossRefGoogle Scholar
  15. 15.
    de Man, H.: Case management: A review of modeling approaches. BPTrends (January 2009)Google Scholar
  16. 16.
    Minor, M., Bergmann, R., Görg, S., Walter, K.: Towards case-based adaptation of workflows. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS, vol. 6176, pp. 421–435. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Müller, R., Greiner, U., Rahm, E.: Agentwork - a workflow system supporting rule-based workflow adaptation. Data Knowl. Eng. 51(2), 223–256 (2004)CrossRefGoogle Scholar
  18. 18.
    Burmeister, B., Arnold, M., Copaciu, F., Rimassa, G.: BDI-agents for agile goal-oriented business processes. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems: Industrial Track, pp. 37–44. International Foundation for Autonomous Agents and Multiagent Systems (2008)Google Scholar
  19. 19.
    Object Management Group: Business Process Model and Notation (BPMN) Version 2.0. Object Management Group (2011)Google Scholar
  20. 20.
    Charfi, A., Mezini, M.: Ao4bpel: An aspect-oriented extension to BPEL. World Wide Web 10(3), 309–344 (2007)CrossRefGoogle Scholar
  21. 21.
    Charfi, A., Müller, H., Mezini, M.: Aspect-oriented business process modeling with AO4BPMN. In: Kühne, T., Selic, B., Gervais, M.-P., Terrier, F. (eds.) ECMFA 2010. LNCS, vol. 6138, pp. 48–61. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Hallerbach, A., Bauer, T., Reichert, M.: Capturing variability in business process models: the Provop approach. J. Softw. Maint. Evol. Res. Pract. 22(6–7), 519–546 (2010)Google Scholar
  23. 23.
    Döhring, M., Zimmermann, B.: vBPMN: event-aware workflow variants by weaving BPMN2 and business rules. In: Halpin, T., Nurcan, S., Krogstie, J., Soffer, P., Proper, E., Schmidt, R., Bider, I. (eds.) BPMDS 2011 and EMMSAD 2011. LNBIP, vol. 81, pp. 332–341. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Milanovic, M., Gasevic, D., Rocha, L.: Modeling flexible business processes with business rule patterns. In: Proceedings of the 15th Enterprise Distributed Object Computing Conference (EDOC 2011), pp. 65–74. IEEE (2011)Google Scholar
  25. 25.
    Marrella, A., Mecella, M., Sardina, S.: SmartPM: an adaptive process management system through situation calculus, indigolog, and classical planning. In: Proceedings of the Fourteenth International Conference on Principles of Knowledge Representation and Reasoning (KR 2014). AAAI Press (2014)Google Scholar
  26. 26.
    La Rosa, M., Wohed, P., Mendling, J., Ter Hofstede, A.H., Reijers, H.A., van der Aalst, W.M.: Managing process model complexity via abstract syntax modifications. IEEE Trans. Indus. Inf. 7(4), 614–629 (2011)CrossRefGoogle Scholar
  27. 27.
    La Rosa, M., Reijers, H.A., Van Der Aalst, W.M., Dijkman, R.M., Mendling, J., Dumas, M., Garcia-Banuelos, L.: APROMORE: an advanced process model repository. Expert Syst. Appl. 38(6), 7029–7040 (2011)CrossRefGoogle Scholar
  28. 28.
    Haisjackl, C., Barba, I., Zugal, S., Soffer, P., Hadar, I., Reichert, M., Pinggera, J., Weber, B.: Understanding declare models: strategies, pitfalls, empirical results. Softw. Syst. Model. 15, 1–28 (2014)Google Scholar
  29. 29.
    Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Imperative versus declarative process modeling languages: an empirical investigation. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 383–394. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  30. 30.
    Reijers, H.A., Mendling, J., Dijkman, R.M.: Human and automatic modularizations of process models to enhance their comprehension. Inf. Syst. 36(5), 881–897 (2011)CrossRefGoogle Scholar
  31. 31.
    Döhring, M., Reijers, H.A., Smirnov, S.: Configuration vs. adaptation for business process variant maintenance: an empirical study. Inf. Syst. 39, 108–133 (2014)CrossRefGoogle Scholar
  32. 32.
    Object Management Group: BPMN 2.0 by Example. Object Management Group (2010)Google Scholar
  33. 33.
    Royce, W.: Managing the development of large software systems. Proc. IEEE WESCON 26(8), 328–388 (1970)Google Scholar
  34. 34.
    Beck, K.: Test-Driven Development by Example. Addison-Wesley Professional, Boston (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Computer Science DepartmentAalen UniversityAalenGermany

Personalised recommendations