Advertisement

Geodynamics and Seismology

  • Akif AlizadehEmail author
  • Fakhraddin A. Kadirov
  • Samir Mammadov
  • Michael Floyd
  • Robert Reilinger
  • Lev V. Eppelbaum
Chapter
Part of the Regional Geology Reviews book series (RGR)

Abstract

Territory of Azerbaijan is located within the central part of the Mediterranean tectonic belt seismicity of which is caused by intensive geodynamic interaction of the Eurasian and Arabian lithospheric plates (Khain 2000).

Keywords

Global Position System Global Navigation Satellite System Global Navigation Satellite System Strain Accumulation Caspian Basin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adams, J., Burris, L., Jentzsch, G., Kopaev, A. and Valliant, H., 2004. The automated Burris gravity meter – a new instrument for surveying and continuous operation. Proceed. of the 15 th Int. Symp. Earth Tides, Ottawa, August 2004.Google Scholar
  2. Aki, K. and Richards, P.G., 1980. Quantitative Seismology, Vols. 1 & 2. W.H. Freeman and Co., San Francisco.Google Scholar
  3. Albano, A. and Corrado, G., 2013. Five years of continuous gravity observations in the Neapolitan volcanic area. Boll. Geofis. Teor. Appl., 54, 1-21.Google Scholar
  4. Aleinikov, A.L., Belikov, V.T. and Eppelbaum, L.V., 2001. Some Physical Foundations of Geodynamics (in Russian, contents and summary in English). Kedem Printing-House, Tel Aviv, Israel.Google Scholar
  5. Allen, M., Jackson, J. and Walker, R., 2004. Late Cenozoic reorganization of the Arabia-Eurasia collision and the comparison of short-term and long-term deformation rates. Tectonics, 23, TC2008, doi: 10.1029/2003TC001530.
  6. Aliyev, A.A., Guliyev, I.S. and Rahmanov, R.R., 2009. Catalogue of Mud Volcanoes Eruptions of Azerbaijan (1810 – 2007). Natfa-Press, Baku.Google Scholar
  7. Aliyev, G.A., Akhmedbeyli, F.S., Ismailzade, A.D., Kangarli, T.H. and Rustamov, M.I. (V.E. Khain and Ak.A. Alizadeh, Eds.), 2005. Geology of Azerbaijan, Vol. IV: Tectonics. Nafta-Press, Baku (in Russian).Google Scholar
  8. Alperovich, L.S. and Zheludev, V.A., 1999. Long-period geomagnetic precursors of the Loma-Prieta earthquake discovered by wavelet method. In: (Hayakawa, M., Ed.), Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes. Terra Scientific Publishing Company, Tokyo, 123-136.Google Scholar
  9. Altamimi, Z., Meltivier, L. and Collilieux, X., 2011. ITRF2008: an improved solution of the international terrestrial reference frame. Journal of Geodesy, 85, No. 8, 457-473.Google Scholar
  10. Altamimi, Z., Meltivier, L. and Collilieux, X., 2012. ITRF2012 plate motion model. Journal of Geophysical Research, 112, B07402, doi:  10.1029/2011JB008930, 1-14.
  11. Ambraseys, N.N., 2002. The Seismic Activity of the Marmara Sea Region over the Last 2000 Years. Seismo. Soc. Am. Bull., 92, 1-18.Google Scholar
  12. Ambraseys, N.N. and Melville, C., 1982. A History of Persian Earthquakes. Cambridge University Press, Cambridge.Google Scholar
  13. ArRajehi, A., McClusky, S., Reilinger, R.E., Daoud, M., Alchalbi, A., Ergintav, S., Gomez, F., Sholan, J., Bou‐Rabee, F., Ogubazghi, G., Haileab, B., Fisseha, S., Asfaw, L., Mahmoud, S., Rayan, A., Bendik, R. and Kogan, L., 2010. Geodetic constraints on present-day motion of the Arabian Plate: Implications for Red Sea and Gulf of Aden rifting. Tectonics, 29, TC3011, doi: 10.1029/2009TC002482.
  14. Ashkenazy, Y., Baker, D.R., Gildor, H. and Havlin, S., 2003. Nonlinearity and multifractality of climate change in the past 420,000 years. Geophys. Res. Lett., 30, 2146-2149.Google Scholar
  15. Avdeev, B. and Niemi, N.A., 2008. Constraints on the rates and timing of exhumation of the Greater Caucasus from low-temperature thermochronology. Eos, Trans. Amer. Geophys. Union, 89, No. 53.Google Scholar
  16. Babayev, G.R., 2008. Numerical modeling of topography-induced stress pattern of the Greater and Lesser Caucasus. Trans. of the Azerbaijan National Academy of Sciences; Proceed. of Azerbaijan Association of Young Scientists, No. 1, 44-56.Google Scholar
  17. Babayev, G.R., 2010. About some aspects of probabilistic seismic hazard assessment of Absheron peninsula. Trans. of the Republican Seismic Survey Center of the Azerbaijan National Academy of Sciences. Catalogue of Seismoforecasting Research Carried Out in Azerbaijan Territory in 2009, “Teкnur”, Baku, 59-64.Google Scholar
  18. Barazangi, M., Sandvol, E. and Seber, D., 2006. Structure and tectonic evolution of the Anatolian plateau in eastern Turkey. Geol. Soc. Amer. Special Paper 409.Google Scholar
  19. Barenblatt, G.I., 1996. Scaling, Self-Similarity, and Intermediate Asymptotics. Cambridge Univ. Press.Google Scholar
  20. Bennett, R.A., Rodi, W. and Reilinger, R., 1996. Global Positioning System constraints on fault slip rates in southern California and northern Baja, Mexico. Jour. Geophys. Research, 101, 21,943-21,960.  Google Scholar
  21. Bird, P., 2003. An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, 4, No. 3, doi:  10.1029/2001GC000252, 1-52.
  22. Bird, P. and Kagan, Y.Y., 2004. Plate-tectonic analysis of shallow seismicity: Apparent boundary width, beta, corner magnitude, coupled lithosphere thickness, and coupling in seven tectonic settings. Seismo. Soc. Amer. Bull., 94, 2380-2399.Google Scholar
  23. Blewitt, G. and Lavallee, D., 2002. Bias in geodetic site velocity due to annual signals. In “Vistas for Geodesy in the New Millenium”, Int. Assoc. Geod. Symposia, 125, 499-500.Google Scholar
  24. Bogusz, J., Klos, A. and Kosek, W., 2013. Wavelet decomposition in the Earth’s gravity field investigation. Acta Geodyn. Geomater., 10, 47-59.Google Scholar
  25. Cetin, E., Cakir, Z., Meghraoui, M., Ergintav, S. and Akoglu, A.M., 2014. Extent and distribution of aseismic slip on the Ismetpasa segment of the North Anatolian Fault (Turkey) from Persistent Scatterer InSAR. Geochem. Geophys. Geosyst., 15, doi:10.1002/ 2014GC005307.Google Scholar
  26. Chen, L., Chen, J.G. and Xu, Q.H., 2012. Correlations between solid tides and worldwide earthquakes M S ≥ 7.0 since 1900. Nat. Hazards Earth Syst. Sci., 12, 587-590.Google Scholar
  27. Copley, A. and Jackson, J., 2006. Active tectonics of the Turkish-Iranian Plateau. Tectonics, 25, TC6006, doi: 10.1029/2005TC001906.
  28. Cowgill, E., Niemi, N.A., Forte, A.M., Elashvili, M., Javakishvili, Z. and Mumladze, T., 2012. Orogen-scale structural architecture and potential seismic sources resulting from Cenozoic closure of a relict Mesozoic ocean basin in the Greater Caucasus. S43 J-07, 2012 Spring AGU Meeting.Google Scholar
  29. Darwin, G.H., 1962. The Tides and Kindred Phenomena in the Solar System. W. H. Freeman, San Francisco, CA.Google Scholar
  30. Dixon, T., 1991. An introduction to the Global Positioning System and some geological applications. Reviews of Geophys., 29, 249-276.Google Scholar
  31. Djamour, Y., Vernant, P., Bayer, R., Nankali, H.R., Ritz, J.F., Hinderer, J., Hatam, Y., Luck, B., LeMoigne, N., Sedighi, M., Khorrami, F., 2010. GPS and gravity constraints on continental deformation in the Alborz mountain range, Iran. Geophys. Jour. Int., 183, 1287-1301.Google Scholar
  32. Ducarme, B., Sun, H.P. and Xu, J.Q., 2002. New investigation of tidal gravity results from GGP network. In: Proc. GGP Workshop, Jena, March 11-15, Bull. Inf. Marées Terrestres, 136, 10761-10776.Google Scholar
  33. Engdahl, E. R., van der Hilst, R. and Buland, R., 1998. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull. Seismol. Soc. Am., 88, 722-743.Google Scholar
  34. Eppelbaum, L.V. and Finkelstein, M.I., 1998. Radon emanation, magnetic and VLF temporary variations: removing components not associated with dynamic processes. Collection of Selected Papers of the XXVI General Assembly of the European Seismological Commission (Tel Aviv, Israel), 122-126.Google Scholar
  35. Eppelbaum, L.V. and Kardashov, V.R., 1998. Nonlinear geothermal processes in the Earth crust and transition waves. Trans. of the International ConferenceThe Earth’s Thermal Field and Related Research Methods”. Moscow, Russia, 82-85 (in Russian).Google Scholar
  36. Eppelbaum, L.V. and Kardashov, V.R., 2001. Analysis of strongly nonlinear processes in geophysics. In: (Moresi, L. and Müller, D., Eds.) Proceed. of the Chapman Conference on Exploration Geodynamics. Dunsborough, Western Australia, 43-44.Google Scholar
  37. Eppelbaum, L.V. and Khesin, B.E., 2012. Geophysical Studies in the Caucasus. Springer, Heidelberg – N.Y. – London.Google Scholar
  38. Ergintav, S. McClusky, S., Hearn, E., Reilinger, R., Cakmak, R., Herring, T., Ozener, H., Lenk, O. and Tari, E., 2009. Seven years of postseismic deformation following the 1999, M = 7.4, and M = 7.2 Izmit-Duzce, Turkey earthquake sequence. Jour. of Geophys. Res., 114, doi: 10.1029/2008JB006021.
  39. Feder, J., 1988. Fractals. Plenum Press, N.Y.Google Scholar
  40. Fialko, Y., 2006. Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system. Nature, 441, 968-971.Google Scholar
  41. Finkelstein, M., Price, C. and Eppelbaum, L., 2012. Is the geodynamic process in preparation of strong earthquakes reflected in the geomagnetic field? Jour. of Geophysics and Engineering, 9, 585-594.Google Scholar
  42. Forte, A., Cowgill, E. Bernardin, T., Kreylos, O. and Hamann, B., 2012. Late Cenozoic deformation of the Kur fold-thrust belt, southern Greater Caucasus. Geol. Society of Amer. Bull., 122, Nos. 3-4, 465-486.Google Scholar
  43. Gadjiev, R.M., Makarov, Y.M., Nabiyev, А.T. and Kadirov, F.A., 1984. Studying of not tidal variations of acceleration of gravity on the Absheron geodynamic polygon. In (Yu. D. Boulanger, Ed.), Repeated Gravimetric Observations. Problems of the theory and results. Academy of Sciences and the Soviet Geophysical Committee, Moscow, 55-59 (in Russian).Google Scholar
  44. Gadjiev, R.M., Kadirov, F.A., Kadyrov, A.G. and Nabiyev, А.T., 1988. Repeated gravimetric survey on the Samur-Baku profile for 1978-1985. In: (Yu. D. Boulanger, Ed.), Repeated gravimetric observations. Proceed. of the Meeting of the Commission for the Study of Non-Tidal Gravity Changes. М., Academy of Sciences and the Soviet Geophysical Committee, Moscow, 151-154 (in Russian).Google Scholar
  45. Gaffet, S., Guglielmi, Y., Virieux, J. Waysand, G., Chwala, A. Stolz, R., Emblanch, C., Auguste, M., Boyer, D. and Cavaillou, A., 2003. Simultaneous seismic and magnetic measurements in the Low-Noise Underground Laboratory (LSBB) of Rustrel, France, during the 2001 January 26 Indian earthquake. Geophysical Jour. International, 155, 981-990.Google Scholar
  46. Gok, R., Sandvol, E., Turkelli, N., Seber, D., and Barazangi, M., 2003. Sn attenuation in the Anatolian and Iranian plateau and surrounding regions. Geophys. Res. Lett., 30, No. 24, doi: 10.1029/2003GL018020.
  47. Gokhberg, M.B., Morgunov, A.V. and Aronov, E.L., 1979. On the high-frequency radiation by seismic activity. Doklady AN USSR, 248, No. 5, 1077-1081.Google Scholar
  48. Gokhberg, M.B. and Shalimov, S.L., 2008. Influence of Earthquakes and Explosions to Ionosphere. Nauka, Moscow (in Russian).Google Scholar
  49. Gutenberg, B. and Richter, C.F., 1956. Magnitude and energy of earthquakes. Annali di Geofisica, 9, 1-15.Google Scholar
  50. Hager, B.H., King, R.W. and Murray, M. H., 1991. Measurements of crustal deformation using the Global Positioning System. Ann. Rev. Earth Planet Sci., 19, 351-382.Google Scholar
  51. Hayakawa, M., 2007. VLF/LF radio sounding of ionospheric perturbations associated with earthquakes. Sensors, 7, 1141-1158.Google Scholar
  52. Heaton, T.H., 1982. Tidal triggering of earthquakes. Bull. Seismol. Soc. Amer., 72, 2181-2200.Google Scholar
  53. Hegewald, A., Jentzsch, G. and Jahr, T., 2011. Influence of temperature variations on the noise level of the data of the LaCoste & Romberg Earth Tide gravity meter ET18. Geochem. Geophys. Geosys, 12, No. 8, http://dx.doi.org/10.1029/2010GC003432.
  54. Herring, T. A., King, R. W. and McClusky, S. M., 2010. Introduction to GAMIT/GLOBK Release 10.4. Mass. Inst. of Technology, 48 pp.Google Scholar
  55. Hu, Kun, Ivanov, P.C., Chen, Z., Carpena, P. and Stanley, H.E., 2015. Effect of trends on detrended fluctuation analysis. Phys. Rev. E, 64, 2001-434, doi: 10.1016/j.physa.2015.02.034.
  56. Iskenderov, I.M., 1978. Secular drift of gravity on the Baku archipelago. In: (Yu.D. Boulanger, Ed.), Repeated Gravimetric Supervision. The collection of works on research of not-tidal changes of gravity and accompanying development in the field of equipment and work methodology. Moscow, 65-69.Google Scholar
  57. Jackson, J., 1992. Partitioning of strike-slip and convergent motion between Eurasia and Arabia in eastern Turkey. Jour. of Geophys. Res., 97, 12471-12479.Google Scholar
  58. Jackson, J. and McKenzie, D., 1984. Active tectonics of the Alpine-Himalayan belt between western Turkey and Pakistan. Geophys. Jour. R. Astr. Soc., 77, 185-246.Google Scholar
  59. Jackson, J. and McKenzie, D., 1988. The relationship between plate motions and seismic tremors, and the rates of active deformation in the Mediterranean and Middle East. Geophys. Jour. R. Astr. Soc., 93, 45-73.Google Scholar
  60. Jackson, J., Priestley, K., Allen, M. and Berberian, M., 2002. Active tectonics of the south Caspian Basin. Geophys. Jour. Intern., 148, 214-245.Google Scholar
  61. Jentzsch, G., 1997. Earth tides and ocean tidal loading. In: H. Wilhelm, W. Zürn and H.G. Wenzel (Eds.), Tidal Phenomena, In: Lecture Notes in Earth Sciences, Vol. 6, Springer-Verlag, Heidelberg, 145-171.Google Scholar
  62. Jentzsch, G., 2008. The automated Burris gravity meter – a new instrument using an old principle. In: Proc. Symposium on Terrestrial Gravimetry: Static and Mobile Measurements, St. Petersburg, Russia, 20-23 Aug. 2007, 21-28.Google Scholar
  63. Jones, L., and 13 others, 2008. The Shake Out Scenario. U.S. Geological Survey Open File Report 2008-1150, California Geological Survey Preliminary Report 25, version 1.0.Google Scholar
  64. Jordan, T. H., 2014. The prediction problems of earthquake system science. Seismol. Res. Lett., 85, 767-769.Google Scholar
  65. Kadinsky-Cade, K. Barazangi, M., Oliver, J. and Isacks, B., 1981. Lateral variations of high-frequency seismic wave propagation at regional distances across the Turkish and Iranian Plateaus. Jour. of Geophysical Research, 86, doi: 10.1029/JB080i010p09377.
  66. Kadirov, F., 2000. Gravity Field and Models of Deep Structure of Azerbaijan. Nafta-Press, Baku, (in Russian).Google Scholar
  67. Kadirov, F., Floyd, M., Alizadeh, A., Guliyev, I., Reilinger, R.E., Kuleli, S., King, R., Toksoz, M.N., 2012. Kinematics of the eastern Caucasus near Baku, Azerbaijan. Natural Hazards, 63, No. 2, 997-1006.Google Scholar
  68. Kadirov, F.A., Ahadov, B.G., Gadirov, A.H., Babayev, G.R., Mammadov, S.G. and Safarov, R.T., 2015b. Microtremor survey and spectral analyses of H/V ratio for Baku city (Azerbaijan). Izvestiya (Proceedings), Acad. Sci. Azerb., Ser.: Earth Sciences, No. 3, 18-24.Google Scholar
  69. Kadirov, F.A., Floyd, M., Reilinger, R., Alizadeh, Ak.A., Guliyev, I.S., Mammadov, S.G. and Safarov, R.T., 2015a. Active geodynamics of the Caucasus Region: Implications for Earthquake Hazards in Azerbaijan. Izvestiya (Proceedings), Acad. Sci. Azerb., Ser.: Earth Sciences, No. 3, 3-17.Google Scholar
  70. Kadirov, F.A. and Gadirov, A.H., 2014. A gravity model of the deep structure of South Caspian Basin along submeridional profile Alborz–Absheron Sill. Global and Planetary Change, 114, 66-74.Google Scholar
  71. Kadirov, F.A., Gadirov, A.G., Babayev, G.R., Agayeva, S.T., Mammadov, S.K. and Garagezova, N.R., 2013. Seismic zoning of the southern slope of the Greater Caucasus from the fractal parameters of the earthquakes, stress state, and GPS velocities. Izvestiya, Phys. Solid Earth, 49 (4), 554-562.Google Scholar
  72. Kadirov, F., Mammadov, S., Reilinger, R.E. and McClusky, S., 2008a. Some new data on modern tectonic deformation and active faulting in Azerbaijan (according to Global Positioning System measurements). Izvestiya (Proceedings) of the Azerb. Nat. Acad. of Sci., Section: Earth Sciences, No. 1, 82-88.Google Scholar
  73. Kadirov, F.A. and Nabiyev, A.T. 1991. To the nature of not tidal variations of the gravity on the Absheron Geodynamic polygon. Izvestiya, Azerb. Nat. Acad. of Sci., Section: Earth Sciences, № 5-6, 135-139.Google Scholar
  74. Kadirov, F.A., Yetirmishli, G. and Kadyrov, A.G., 2008b. Estimation of the maximum magnitude and intensity earthquakes in the Azerbaijan territory. Proceed. of the Geol. Institute of ANAS, 36, 81-87 (in Russian).Google Scholar
  75. Kardashov, V.R., Eppelbaum, L.V. and Vasilyev, O.V., 2000. The role of nonlinear source terms in geophysics. Geophysical Research Letters, 27, No. 14, 2069-2073.Google Scholar
  76. Kantelhardt, J., Zschiegner, S., Koscielny-Bunde, E., Bunde, A., Havlin, S., Stanley, E., 2002. Multifractal detrended uctuation analysis of nonstationary timeseries. Physica A, 316, 87-114.Google Scholar
  77. Keilis-Borok, V.I., 1990. The lithosphere of the Earth as a nonlinear system with implications for earthquake prediction. Reviews of Geophysics, 28, 19-34.Google Scholar
  78. Khain, V.E., 2000. Tectonics of Continents and Oceans. Nauchyi Mir, Moscow (in Russian). Google Scholar
  79. Knapp, C.C., Knapp, J.H. and Connor, J.A., 2004. Crustal-scale structure of the South Caspian Basin revealed by deep seismic reflection profiling. Marine and Petroleum Geology, 2, 1073-1081.  Google Scholar
  80. Kondorskaya, N.V. and Shebalin, N.V., 1977. A new Catalogue of Strong earthquakes in the Territory of the USSR from the Ancient Time to 1975. Nauka, Moscow (in Russian).Google Scholar
  81. Kondorskaya, N.V. and Shebalin N.V., 1982. (Eds.), New catalog of strong earthquakes in the USSR from ancient times through 1977, World Data Centre A for Solid Earth Geophysics, Report SE-31, English translation of Russian original, Boulder, Colorado, USA.Google Scholar
  82. Kopp, M.L. and Shcherba, I.G., 1985. Late Alpine development of the Eastern Caucasus. Geotectonics (Geotektonika), 19 No. 6, 497-507 (in Russian).Google Scholar
  83. Král, J. and Gurbanov, A.G., 1996. Apatite fission track data from the Greater Caucasus pre-Alpine basement. Chemieder Erde, 56, 177-192.Google Scholar
  84. Lawrence, S.A., 2003. Kinematically consistent, elastic block model of the Eastern Mediterranean constrained by GPS measurements. M.S. Thesis, Massachusetts Institute of Technology, Cambridge, MA.Google Scholar
  85. Lay, T., Yamazaki, Y., Ammon, C.J., Cheung, K.F. and Kanamori, H., 2011. The 2011 Mw 9.0 off the Pacific coast of Tohoku Earthquake: Comparison of deep-water tsunami signals with finite-fault rupture model predictions. Earth Planets Space, 63, 797-801.Google Scholar
  86. Lyons, S. and Sandwell, D., 2003. Fault creep along the southern San Andreas from interferometric synthetic aperture radar, permanent scatterers, and stacking. Jour. Geophys. Res., 108, B1, 2047, doi: 10.1029/2002JB001831.
  87. Lyubimova, E.A., Mukhtarov, A.Sh. and Ismailzadeh, T.A., 1982. Temperature variations in the “Biladzhik” drill hole (Azerbaijan) during regional seismic activity. Izvestiya, Physics of the Earth, 21, No. 4, 319-322.Google Scholar
  88. Lyzenga, G.A., Panero, W.R. and Donnellan, A., 2000. Influence of anelastic surface layers on postseismic thrust fault deformation. Jour. Geophys. Res., 105, 3151-3157.Google Scholar
  89. Mammadov, S., Jahr, T., Jentzsch, G., Kadirov, F., 2011. Primary results of new gravity station Sheki/Azerbaijan. Marees Terrestres Bulletin D’informations, International Center for Earth tides, BIM 147, 11881-11890.Google Scholar
  90. Masci, F. and Thomas, J.N., 2015. Are the new finding in the search for ULF magnetic precursors to earthquakes. Jour. of Geophysical Research. Space Physics, 120, doi: 10.1002/2015JA021336, 1-16.
  91. Meghraoui, M., Aksoy, M.E., Akyuz, H.S., Ferry, M., Dikbas, A. and Altunel, E., 2012. Paleoseismology of the North Anatolian Fault at Guzelkoy (Ganos segment, Turkey): Size and recurrence time of earthquake ruptures west of the Sea of Marmara. Geochem. Geophys. Geosys, 13, Q04005, doi: 10.1029/2011GC003960.
  92. Melchior, P.J., 1983. The Tides of the Planet Earth. Pergamon Press.Google Scholar
  93. Mellors, R.J., Yetirmishli, G., Binter, C., Gok, R., Sandvol, E.A., Takedatsu, R., Godoladze, T., Turkelli N., 2009. Earthquake Hypocenters in the Kur Basin and Greater Caucasus. Trans. of the American Geophysical Union, Fall Meeting 2009, abstract #T53G-04.Google Scholar
  94. Meloni, M., Di Mauro, D., Lepidi, S., Mele, G. and Palangio, P., 2004. Tectonomagnetic and VLF electromagnetic signals in Central Italy. Annals of Geophysics, 47, No. 1, 29-37.Google Scholar
  95. McClusky, S, Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gurkan, O. Hamburger, M., Hurst, K., Kahle, H., Kastens, K., Kekelidze, G., King, R., Kotzev, V. Lenk, O., Mahmoud, S., Mishin, A., Nadariya, T.M., Ouzounis, A., Paradisssis, D., Prilepin, M., Reilinger, R.E., Sanli, I., Seeger, H., Tealeb, A., Toksoz, M.N. and Veis, G., 2000. GPS constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Jour. of Geophys. Res., 105, 5695-5719.Google Scholar
  96. McClusky, S., Reilinger, R., Mahmoud, S., Ben Sari, D. and Tealeb, A., 2003. GPS constraints on Africa (Nubia) and Arabia plate motion. Geophys. Jour. Intern., 155, 126-138.Google Scholar
  97. McQuarrie, N., Stock, J.M., Verdel, C. and Wernicke, B.P., 2003. Cenozoic evolution of Neotethys and implications for the causes of plate motions. Geophys. Res. Lett., 30, doi: 10.1029/2003GL017992.
  98. McQuarrie, N. and van Hinsbergen, D.J.J., 2013. Retro deforming the Arabia-Eurasia collision zone: Age of collision versus magnitude of continental subduction. Geology, 41, 315-318.Google Scholar
  99. McKenzie, D.P., 1970. Plate tectonics of the Mediterranean region. Nature, 226, 239-243.Google Scholar
  100. McKenzie, D.P., Davies, D. and Molnar, P., 1970. Plate tectonics of the Red Sea and East Africa. Nature, 226, 243-248, 1970.Google Scholar
  101. McKenzie, D.P., 1972. Active tectonics of the Mediterranean region. Geophys. Jour. R. Astron. Soc., 30, 109-185.Google Scholar
  102. Mogi, K., Mochizuki, H. and Kurokawa, Y., 1989. Temperature changes in an artesian spring at Usami in the Izu peninsula (Japan) and their relation to earthquakes. Tectonophysics, 159, 95-108.Google Scholar
  103. Mueller, I.I., and Beutler, G., 1992. The International GPS Service for Geodynamics - Development and Current Structure. Proceed. of the 6 th Symp. on Satellite Positioning, Ohio State Univ., Columbus, Ohio.Google Scholar
  104. Müller, B., Barth, A., Heidbach, O., Reinecker, J., Sperner, B., Tingay, M. and Wenzel, F. 2005. The World Stress Map – an essential and easy accessible tool for geohazard assessment. Proceed. of the Int. Workshop Recent Geodynamics, Georisk and Sustainable Development in the Black Sea to Caspian Region, Vol. 825, Baku, AIP, 19-31.Google Scholar
  105. Mushketov, I.V. and Orlov, A.P., 1893. Cataloque of earthquakes of the Russian Empire. Notes of Russian Geographic Soc., St. Petersburg, 26, 1-582 (in Russian).Google Scholar
  106. Neprochnov, Y.U., 1968. Structure of the Earth’s crust of epicontinental seas: Caspian, Black and Mediterranean. Canad. Jour. Earth Sci., 5, 1037-1043.Google Scholar
  107. Nur, A. and Mavko, G., 1974. Postseismic Viscoelastic Rebound. Science, 183, 204-206.Google Scholar
  108. Okada, Y., 1985. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am., 75, 1135-1154.Google Scholar
  109. Ouyang, Z., Zhang, H., Fu, Z., Gou, B. and Jiang, W., 2009. Abnormal phenomena recorded by several earthquake precursor observation instruments before the M s 8.0 Wenchuan, Sichuan earthquake. Acta Geologica Sinica, 83, No. 4, 834-844.Google Scholar
  110. Parisi, G. and Frisch, U., 1985. On the singularity structure of fully developed turbulence. In: (M. Ghil, R. Benzi and G. Parisi, Eds.), Turbulence and Predictability in Geophysical Fluid Dynamics, Proceed. of the International School of Physics ‘‘Enrico Fermi’’ (1983), North-Holland, 84-87.Google Scholar
  111. Peng, C.K., Buldyrev, S.V., Havlin, S., Simons, S.M., Stanley, H.E. and Goldberger, A.L., 1994. Mosaic organization of DNA nucleotides. Phys. Rev. E, 49, 1685-1689.Google Scholar
  112. Philip, H., Cisternas, A., Gvishiani, A. and Gorshkov, A., 1989. The Caucasus: An actual example of the initial stages of continental collision. Tectonophysics, 161, 1-21.Google Scholar
  113. Philip, H., Avagyan, A., Karakhanian, A., Ritz, J.-F. and Rebai, S., 2001. Estimating slip rates and recurrence intervals for strong earthquakes along an intracontinental fault: Example of the Pambak-Sevan-Sunik fault (Armenia). Tectonophysics, 343, 205-232.Google Scholar
  114. Podgorski, J., Hearn, E., McClusky, S., Reilinger, R.E., Taymaz, T. and Tan, O., 2007. Postseismic deformation following the 1991 Racha, Georgia, earthquake. Geophys. Res. Lett., 34, L04310, doi:10.1029/ 2006GL028477.Google Scholar
  115. Pollitz, F.F., 1992. Postseismic relaxation theory on the spherical earth. Bull. Seismol. Soc. Amer., 82, No. 1, 422-453.Google Scholar
  116. Prescott, W.H. and Savage, J.C., 1976. Strain accumulation on the San Andreas Fault near Palmdale, California. Jour. of Geophys. Res., 81, 4901-4908.Google Scholar
  117. Pudovkin, I.M., Pogrebnikov, M.M., Pochtarov, V.I. and Bekzhanov, G.G., 1973. On the direct correlation between the geomagnetic variations and earthquakes. Doklady AN USSR, 208, No. 5, 1074-1077.Google Scholar
  118. Rautian, T.G., 1964. On the estimation of earthquake energy at distances up to 3,000 km. Proceed. of the Inst. Phys. Earth, No. 32, Nauka, Moscow, 88-93 (in Russian).Google Scholar
  119. Reilinger, R.E., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliyev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa, A. Filikov, S.V., Gomez, F., Al-Ghazzi, R. and Karam, G., 2006. GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Jour. of Geophys. Res., BO5411, doi: 10.1029/2005JB004051.
  120. Reinecker, J., Heidbach, O. and Müller, B. 2005. The 2005 release of the World Stress Map, www.world-stress-map.org; last time was seen on 20.08.2015.
  121. Riznichenko, Yu.V., 1968. Seismic activity and shockability. In: Seismic regioning of the territory of the USSR. Nauka, Moscow (in Russian).Google Scholar
  122. Riznichenko, Yu.V., 1985. Problems of Seismology. Selected Publications. Nauka, Moscow (in Russian).Google Scholar
  123. Riznichenko, Yu.V., Khesin, B.E. and Metaxa, Kh.P., 1983. Relation between seismicity and magnetic field according to observations in Azerbaijan. Izvestiya, Ser. Physics of the Solid Earth, No.1, 3-14 (in Russian).Google Scholar
  124. Rzayev, A.G., 2005. Seismoprognostic investigations. In: (Ak.A. Alizadeh, Ed.), Geology of Azerbaijan, Nafta-Press, Vol. 5, Physics of the Earth, 23-34 (in Russian).Google Scholar
  125. Sengor, A.M.C., Gorur, N. and Saroglu, F., 1985. Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study, In: (Biddle, K.T. and Christie-Blick, N., Eds.), Strike-slip Faulting and Basin Formation, Society of Econ. Paleont. Min. Sec. Pub, 37, 227-264.Google Scholar
  126. Sengor, A.M.C., Tuysuz, O., Imren, C., Sakinc, M., Eyidogan, H., Gorur, N., LePichon, X. and Rangin, C., 2004. The North Anatolian fault: A new look. Ann. Rev. Earth Planet. Sci., 33, 1-75.Google Scholar
  127. Sheorey, P.R., 1994. A theory for in situ stresses in isotropic and transversely isotropic rock. Intern. Jour. Rock. Mech. Min. Sci. & Geomech. Abstr., 31, No 1, 23-34.Google Scholar
  128. Singh, R.P. and Dey, S., 2003. Surface latent heat flux as an earthquake precursor. Natural Hazards and Earth System Sciences, 3, 749-755.Google Scholar
  129. Stacey, F.D., 1969. Physics of the Earth. Wiley, N. Y.Google Scholar
  130. Swartz, D.P. and Coppersmith, K.J., 1984. Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas Fault Zones. Jour. of Geophys. Res., 49, 5681-5698.Google Scholar
  131. Telesca, L., Lovallo, M., Babayev, G. and Kadirov, F., 2013. Spectral and informational analysis of seismicity: an application to the 1996–2012 seismicity of the Northern Caucasus–Azerbaijan part of the Greater Caucasus–Kopet Dagh region. Physica A, 392, 6064-6078.Google Scholar
  132. Telesca, L., Lovallo, M., Mammadov, S. Kadirov, F. and Babayev. G., 2015. Power spectrum analysis and multifractal detrended fluctuation analysis of earth’s gravity time series. Physica A: Statistical Mechanics and its Applications, 428, No. 4.Google Scholar
  133. Torge, W., 1989. Gravimetry. De Gruyter. Berlin – N.Y.Google Scholar
  134. Triep, E.G., Abers, G.A., Lerner-Lam, A.L., Mishatkin, V., Zakharchenko, N. and Starovoit, O., 1995. Active thrust front of the Greater Caucasus: The April 29, 1991 Racha earthquake sequence and its tectonic implications. Jour. of Geophys. Res., 100, 4011-4033.Google Scholar
  135. Vernant, P. and Chery, J., 2006. Low fault friction in Iran implies localized deformation for the Arabia–Eurasia collision zone. Earth and Planetary Sci. Lett., 246, 197-206.Google Scholar
  136. Vernant, P., Reilinger, R.E. and McClusky, S., 2014. Geodetic evidence for low coupling on the Hellenic subduction plate interface. Earth, Planet. Sci., 385, 122-129.Google Scholar
  137. Veselov, K.E., 1988. Gravity Prospecting. Nedra, Moscow (in Russian).Google Scholar
  138. Vidale, J.E., Agnew, D.C., Johnston, M.J.S. and Oppenheimer, D.H., 1998. Absence of earthquake correlation with Earth tides: an indication of high preseismic fault stress rate. Jour. of Geophys. Res., Solid Earth, 103, 24567-24572.Google Scholar
  139. Vincent, S.J., Morton, A.C., Carter, A., Gibbs, S. and Teimuraz, G.B., 2007. Oligocene uplift of the Western Greater Caucasus: An effect of initial Arabia-Eurasia collision. Terra Nova, 19, 160-166, doi: 10.1111/j.1365-3121.2007.00731.x.
  140. Voisin, S., 2002. Dynamic triggering of earthquakes: The nonlinear slip-dependent friction case. Jour. of Geophysical Research, 107, B12, 2356, doi: 10.1029/2001JB001121, 10_1-10_11.
  141. Weldon II, R. J., Scharer, K., Fumal, T. and Biasi, G., 2004. Wrightwood and the earthquake cycle: what a long recurrence record tells us about how faults work. GSA Today, 14(9), 4-10.Google Scholar
  142. Wells, D.L. and Coppersmith, K.J., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seism. Soc. Am., 84, 974-1002.Google Scholar
  143. Wenzel, H.-G., 1996. The nanogal software: Earth tide data processing package ETERNA 3.30. Bulletin d’Informations Marees Terrestres, Vol. 124, 9425-9439.Google Scholar
  144. Westaway, R., 1990. Seismicity and tectonic deformation rate in Soviet Armenia: Implications for local earthquake hazard and evolution of adjacent regions. Tectonics, 9(3), 477-503, doi: 10.1029/TC009i003p00477.
  145. Working Group on California Earthquake Probabilities (WGCEP), 2008. The Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2). U.S. Geological Survey Open-File Report 2007-1437 and California Geological Survey Special Report 203 [http://pubs.usgs.gov/of/2007/1091/].
  146. Yaschenko, V.R., 1989. Geodetic Investigation of Earth Crust Vertical Movements. Nedra, Moscow (in Russian).Google Scholar
  147. Yetirmishli, G.D. and Kazimova, S.E., 2013. Velocity model of crust of Azerbaijan from the data of digital seismic stations. Geology and Geophysics of South of Russia. No. 1, 59-74.Google Scholar
  148. Yetirmishli, G.J., Mammadli, T.Y. and Kazimova, S.E., 2013. Features of seismicity of Azerbaijan part of the Greater Caucasus. Jour. of Georgian Geoph. Society, Iss. (A), Physics of Solid Earth, 16a, 55-60.Google Scholar
  149. Young, D. and Zürn, W., 1979. Tidal triggering of earthquakes in the Swabian Jura. Jour. of Geophysics, 45, 171-182.Google Scholar
  150. Zoller, G., Ben-Zion, Y., Holschneider, M. and Hainz, S., 2007. Estimating recurrence times and seismic hazard of large earthquakes on an individual fault. Geophys. Jour. Int., 170, 1300-1310.Google Scholar
  151. Zonenshain, L.P., and Le Pichon, X., 1986. Deep basins of the Black Sea and Caspian Sea as remnants of Mesozoic back-arc basins. Tectonophysics, 123, 181-211.Google Scholar
  152. Zürn, W., 1997. The nearly diurnal free wobble-resonance. In: (H. Wilhelm, W. Zurn and H.-G. Wenzel, Eds.), Tidal Phenomena, Lecturer Notes in Earth Sciences, Vol. 66, 95-109.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Akif Alizadeh
    • 1
    Email author
  • Fakhraddin A. Kadirov
    • 1
  • Samir Mammadov
    • 1
  • Michael Floyd
    • 2
  • Robert Reilinger
    • 2
  • Lev V. Eppelbaum
    • 3
  1. 1.Geology and Geophysics InstituteNational Academy of SciencesBakuAzerbaijan
  2. 2.Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Department of Earth SciencesTel Aviv UniversityTel AvivIsrael

Personalised recommendations