Skip to main content

Continuum Mechanics

  • Chapter
  • First Online:
Shapes and Dynamics of Granular Minor Planets
  • 379 Accesses

Abstract

In this chapter we cover the rudiments of solid mechanics as will be required in later development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For more information about conditions that \({\mathbf f}\) is subjected to we refer the interested reader to Gurtin (1981, Chap. III).

  2. 2.

    The subscript ‘F’ is included to distinguish this rotation tensor from \({\mathsf {R}}\) defined by (2.1) that relates frames \({\mathscr {O}}\) and \({\mathscr {I}}\).

  3. 3.

    Cf. (2.54).

  4. 4.

    Indeed, such an \({\mathsf {E}}\) is expressible as \({\mathsf {E}} = \sum _{i=1}^3 \lambda ^2_i\hat{\mathbf E}_i\otimes \hat{\mathbf E}_i,\) where \(\lambda ^2_i\) are the eigenvalues and \(\hat{\mathbf E}_i\) are the corresponding eigenvectors. Then \(1= {\mathbf X}\cdot {\mathsf {E}}\cdot {\mathbf X} = \lambda _i^2X_i^2\) represents an ellipsoid with semi-axes of length \(\lambda ^{-1}_i\) lying along \(\hat{\mathbf E}_i\).

  5. 5.

    While symmetry is obvious, the following computation shows that \({\mathsf {e}}\) is positive definite. For arbitrary \({\mathbf u},\) we have \({\mathbf u}\cdot {\mathsf {e}}\cdot {\mathbf u} = {\mathbf u}\cdot {\mathsf {H}}^{-T} \cdot {\mathsf {E}} \cdot {\mathsf {H}}^{-1}\cdot {\mathbf u} = \left( {\mathsf {H}}^{-1}\cdot {\mathbf u}\right) \cdot {\mathsf {E}} \cdot \left( {\mathsf {H}}^{-1}\cdot {\mathbf u}\right) = {\mathbf y}\cdot {\mathsf {E}}\cdot {\mathbf y} > 0,\) as \({\mathsf {E}}\) is positive definite and \({\mathsf {H}}\) is invertible.

  6. 6.

    Other stress tensor definitions depending on the choice of the body’s configuration are possible; see Spencer (1980, Chap. 5).

  7. 7.

    In contrast, the work function in elasticity relates stress to strain, not its increment.

  8. 8.

    We label any substantial Solar System object, which is not a major planet as a minor planet.

  9. 9.

    Ratio of the free volume in an aggregate to the volume occupied by grains.

  10. 10.

    Ratio of the deviation of the void ratio from its maximum achievable value to the total possible change in the void ratio at a given confining pressure.

  11. 11.

    Ratio of volume occupied by grains to total volume.

  12. 12.

    This is found employing (2.69) and formulae (4.1) for the average stress within an asteroid.

References

  • R.J. Asaro, V.A. Lubarda, Mechanics of Solids and Materials (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  • J. Blum, R. Schräpler, Structure and mechanical properties of high-porosity macroscopic agglomerates formed by random ballistic deposition. Phys. Rev. Lett. 93(115503), 1–4 (2004)

    Google Scholar 

  • M.D. Bolton, A Guide to Soil Mechanics, 3rd edn. (Universities Press, Hyderabad, 2003)

    Google Scholar 

  • W.F. Chen, D.J. Han, Plasticity for Structural Engineers (Springer, New York, 1988)

    Book  Google Scholar 

  • H. Cohen, Pseudo-rigid bodies. Util. Math. 20, 221–247 (1981)

    Google Scholar 

  • H. Cohen, R.G. Muncaster, The Theory of Pseudo-Rigid Bodies (Springer, New York, 1988)

    Book  Google Scholar 

  • S. Fukushima, F. Tatsuoka, Strength and deformation characteristics of saturated sand at extremely low pressures. Soils Found. 24, 30–48 (1984)

    Article  Google Scholar 

  • Y.C. Fung, Foundations of Solid Mechanics (Prentice-Hall, Englewood Cliffs, 1965)

    Google Scholar 

  • D.T. Greenwood, Principles of Dynamics (Prentice-Hall, Englewood Cliffs, 1988)

    Google Scholar 

  • M.E. Gurtin, An Introduction to Continuum Mechanics (Academic Press, San Diego, 1981)

    Google Scholar 

  • R. Hill, Mathematical Theory of Plasticity (Oxford University Press, Oxford, 1950)

    Google Scholar 

  • K.A. Holsapple, Spin limits of solar system bodies: from the small fast-rotators to 2003 EL61. Icarus 187, 500–509 (2007)

    Article  Google Scholar 

  • G.A. Holzapfel, Nonlinear Solid Mechanics (Wiley, New York, 2001)

    Google Scholar 

  • H.M. Jaeger, S.R. Nagel, The physics of the granular state. Science 255, 1523–1531 (1992)

    Article  Google Scholar 

  • J.T. Jenkins, M.W. Richman, Grad’s 13-moment system for a dense gas of inelastic spheres. Arch. Ration. Mech. Anal. 87, 355–377 (1984)

    Google Scholar 

  • J.T. Jenkins, M.W. Richman, Kinetic theory for plane flows of a dense gas of identical, rough, inelastic circular disks. Phys. Fluids 12, 3485–3494 (1985)

    Article  Google Scholar 

  • J.T. Jenkins, S.B. Savage, Theory for the rapid flow of identical, smooth, nearly elastic spherical particles. J. Fluid Mech. 130, 187–202 (1983)

    Article  Google Scholar 

  • W.T. Koiter, General theorems for elastic-plastic solids, in Progress in Solid Mechanics, vol. 1, ed. by I.N. Sneddon, R. Hill (North-Holland, Amsterdam, 1960), pp. 167–221

    Google Scholar 

  • P.V. Lade, J.A. Yamamuro, C.D. Liggio Jr., Effects of fines content on void ratio, compressibility, and static liquefaction of silty sand. Geomech. Eng. 1, 1–15 (2009)

    Article  Google Scholar 

  • L. Lancelot, I. Shahrour, M.A. Mahmoud, Failure and dilatancy properties of sand at relatively low stresses. J. Eng. Mech. ASCE 132, 1396–1399 (2006)

    Article  Google Scholar 

  • R.M. Nedderman, Statics and Kinematics of Granular Materials (Cambridge University Press, Cambridge, 1992)

    Book  Google Scholar 

  • V.M. Ponce, J.M. Bell, Shear strength of sand at extremely low pressures. J. Geotech. Eng. ASCE (J. Soil Mech. Found. Div. ASCE), 97, 625–638 (1971)

    Google Scholar 

  • D.C. Richardson, P. Elankumaran, R.E. Sanderson, Numerical experiments with rubble piles: equilibrium shapes and spins. Icarus 173, 349–361 (2005)

    Article  Google Scholar 

  • D.J. Scheeres, C.M. Hartzell, P. Sanchez, M. Swift, Scaling forces to asteroid surfaces: the role of cohesion. Icarus 210, 968–984 (2010)

    Article  Google Scholar 

  • A. Signorini, Alcune proprietà di media nella elastostatica ordinaria. Rend. Lincei 15, 151–156 (1932)

    Google Scholar 

  • J.C. Simo, T.J.R. Hughes, Computational Inelasticity (Springer, New York, 1997)

    Google Scholar 

  • J.J. Slawianowski, Analytical mechanics of finite homogeneous strains. Arch. Mech. 26, 569–587 (1974)

    Google Scholar 

  • J.J. Slawianowski, Newtonian dynamics of homogeneous strains. Arch. Mech. 27, 93–102 (1975)

    Google Scholar 

  • A.J.M. Spencer, Continuum Mechanics (Dover, New York, 1980)

    Google Scholar 

  • S. Sture, S.N. Batiste, K.A. AlShibli, R.A. Swanson, Mechanics of granular materials at low effective pressures. J. Aerosp. Eng. ASCE 11, 67–72 (1998)

    Article  Google Scholar 

  • C. Truesdell, R.A. Toupin, The classical field theories, in Encyclopedia of Physics Vol. III/I: Principles of Classical Mechanics and Field Theory, ed. by S. Flüugge (Springer, Berlin, 1960), pp. 226–793

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishan Sharma .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sharma, I. (2017). Continuum Mechanics. In: Shapes and Dynamics of Granular Minor Planets. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-40490-5_2

Download citation

Publish with us

Policies and ethics