Advertisement

Omega-3 Milk

  • Anand Arvind Zanwar
  • Yogesh S. Badhe
  • Subhash L. Bodhankar
  • Prakash B. Ghorpade
  • Mahabaleshwar V. Hegde
Chapter

Abstract

Alpha-linolenic acid (ALA) is important constituent in human breast milk. Omega-3-fatty acid (n-3-FA) plays an important role in infants post birth development; omega-3-fatty acids are obtained from breast milk. Traditionally, cattle grazed in the field and get some omega-3 fatty acid from the green pastures. However, now, they are fed with defined diet solely for getting high milk yield, which resulted in deficiency in omega-3 fatty acid in milk. Various attempts have been made to fortify food products with omega-3 fatty acid. Fortification of food with n-3-FA may offer an effective way of increasing omega-3 long-chain polyunsaturated fatty acid intakes. Recent data indicate that blend of dairy lipids and omega-3-fatty acid from vegetarian oil, can potentiate higher levels of n-3 LC-PUFA levels endogenously. Enriching cattle milk by feeding omega-3-rich cattle feed is also not straight forward. Biofortification is not possible and is met with a biological hurdle in the cattle, as they are ruminants. Several attempts have been made to fortify milk with omega-3 fatty acid or preparation of omega-3-fortified formula milk for infants. Further this chapter reviews crucial role of omega-3-milk in human health especially in mother and child health.

Keywords

Omega-3 fatty acid Omega-3 milk Fortification Formula milk 

List of abbreviations

ALA

Alpha-linolenic acid

n-3-FA

Omega-3 fatty acid

n-3 LC-PUFA

Omega-3 long-chain polyunsaturated fatty acid

LA

Linoleic acid

EFAs

Essential fatty acids

DHA

Docosahexaenoic acid

EPA

Eicosapentaenoic acid

AA

Arachidonic acid

References

  1. 1.
    American Dietetic Association. Position of the american dietetic association: promoting and supporting breastfeeding. JADA. 2005;105:810–8.CrossRefGoogle Scholar
  2. 2.
    Morris DS. Flax—A Health and Nutrition Primer. 2007, 4th ed. Flax Council of Canada. Winnipeg, MB, Canada. http://www.jitinc.com/flax/brochure02.pdf.
  3. 3.
    Klein CJ. Nutrient requirements for preterm infant formulas. J Nutr. 2002;132:1395S–577S.PubMedGoogle Scholar
  4. 4.
    Burdge GC, Calder PC. Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod Nutr Dev. 2005;45:581–97.CrossRefPubMedGoogle Scholar
  5. 5.
    Connor WE. Importance of n-3 fatty acids in health and disease. Am J Clin Nutr. 2000;71:171S–5S.PubMedGoogle Scholar
  6. 6.
    Brenna JT, Salem N, Sinclair AJ, Cunnane SC. For the international society for the study of fatty acids and lipids, ISSFAL, α-linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot Essent Fatty Acids. 2009;80(2–3):85–91.CrossRefPubMedGoogle Scholar
  7. 7.
    Horrocks LA, Yeo YK. Health benefits of docosahexaenoic acid DHA. Pharmacol Res. 1999;40:211–25.CrossRefPubMedGoogle Scholar
  8. 8.
    Arterburn LM, Hall EB, Oken H. Distribution, interconversion, and dose response of n− 3 fatty acids in humans. Am J Clin Nutr. 2006;83(6):S1467–76.Google Scholar
  9. 9.
    Burdge G. Alpha-linolenic acid metabolism in men and women: nutritional and biological implications. Curr Opin Clin Nutr Metab Care. 2004;7(2):137–44.CrossRefPubMedGoogle Scholar
  10. 10.
    Burdge GC, Finnegan YE, Minihane AM, Williams CM, Wootton SA. Effect of altered dietary n-3 fatty acid intake upon plasma lipid fatty acid composition, conversion of [13C] alpha-linolenic acid to longer-chain fatty acids and partitioning towards beta-oxidation in older men. Br J Nutr. 2003;90(2):311–21.CrossRefPubMedGoogle Scholar
  11. 11.
    Burdge GC, Jones AE, Wootton SA. Eicosapentaenoic and docosapentaenoic acids are the principal products of alpha-linolenic acid metabolism in young men. Br J Nutr. 2002;88(4):355–63.CrossRefPubMedGoogle Scholar
  12. 12.
    Dyerberg J, Madsen P, Moller JM, Aardestrup I, Schmidt EB. Bioavailability of marine n-3-fatty acid formulations. Prostaglandins Leukot Essent Fatty Acids. 2010;83(3):137–41.CrossRefPubMedGoogle Scholar
  13. 13.
    Schuchardt JP, Hahn A. Bioavailability of long-chain omega-3 fatty acids. Prostaglandins Leukot Essent Fatty Acids. 2013;89(1):1–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Du Q, Martin JC, Agnani G, Pages N, Leruyet P, Carayon P, Delplanque P. Dairy fat blends high in α-linolenic acid are superior to n-3 fatty-acid-enriched palm oil blends for increasing DHA levels in the brains of young rats. J Nutr Biochem. 2012;23:1573–82.CrossRefPubMedGoogle Scholar
  15. 15.
    Gianni ML, Roggero P, Baudry C, Ligneul A, Morniroli D, Garbarino F, Ruyet PL, Mosca F. The influence of a formula supplemented with dairy lipids and plant oils on the erythrocyte membrane omega-3 fatty acid profile in healthy full-term infants: a double-blind randomized controlled trial. BMC Pediatrics. 2012;12:164.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Innis SM. Dietary (n-3) fatty acids and brain development. J Nutr. 2007;137:855–9.PubMedGoogle Scholar
  17. 17.
    Makrides M, Simmer K, Goggin M, Gibson RA. Erythrocyte docosahexaenoic acid correlates with the visual response of healthy, term infants. Pediatr Res. 1993;33:425–7.PubMedGoogle Scholar
  18. 18.
    Farquharson J, Jamieson EC, Abbasi KA, Patrick WJ, Logan RW, Cockburn F. Effect of diet on the fatty acid composition of the major phospholipids of infant cerebral cortex. Arch Dis Child. 1995;72:198–203.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Miller MR, Seifert J, Szabo NJ, Clare-Salzler M, Rewers M, Norris JM. Erythrocyte membrane fatty acid content in infants consuming formulas supplemented with docosahexaenoic acid (DHA) and arachidonic acid (ARA): an observational study. Mater Child Nutr. 2010;6:338–46.CrossRefGoogle Scholar
  20. 20.
    Putnam JC, Carlson SE, DeVoe PW, Barness LA. The effect of variations in dietary fatty acids on the fatty acid composition of erythrocyte phosphatidylcholine and phosphatidylethanolamine in human infants. Am J Clin Nutr. l982;36:l06–l4.Google Scholar
  21. 21.
    Sanders TBA, Reddy S. The influence of a vegetarian diet on the fatty acid composition of human milk and the essential fatty acid status of the infant. J Pediatr. 1992;120:S71–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Du Q, Martin JC. Genevieve Agnani, Nicole Pages, Pascale Leruyet, Pierre Carayon, Bernadette Delplanque. Dairy fat blends high in α-linolenic acid are superior to n-3 fatty-acid-enriched palm oil blends for increasing DHA levels in the brains of young rats. J Nutr Biochem. 2012;23:1573–82.CrossRefPubMedGoogle Scholar
  23. 23.
    Bhalerao SS, Hegde MV, Ranade A, Avari P, Nikam S, Kshirsagar K, Kadam SS. Studies in production of omega-3 chicken meat II. Ind J Poultry Sci. 2010;45(3):273–9.Google Scholar
  24. 24.
    Grashorn MA. Enrichment of eggs and poultry meat with biologically active substances by feed modifications and effects on the final quality of the product. Pol J Food Nutr Sci. 2005;14(55):15–20.Google Scholar
  25. 25.
    Jenkins TC. Lipid metabolism in the rumen. J Dairy Sci. 1993;76:3851–63.CrossRefPubMedGoogle Scholar
  26. 26.
    Kim EJ, Huws SA, Lee MRF, Scollan ND. Dietary transformation of lipid in the rumen microbial ecosystem. Asian-Aust J Anim Sci. 200;22(9):1341–50.Google Scholar
  27. 27.
    Jenkins T. Challenges of meeting cow demands for omega fatty acids. Florida Ruminant Nut Symp. 2004;52:66.Google Scholar
  28. 28.
    Abu-Saad K, Fraser D. Maternal nutrition and birth outcomes. Epidemiol Rev. 2010;32(1):5–25.CrossRefPubMedGoogle Scholar
  29. 29.
    Villar J, Merialdi M, Gülmezoglu AM, Abalos E, Carroli G, Kulier R, de Onis M. Nutritional interventions during pregnancy for the prevention or treatment of maternal morbidity and preterm delivery: an overview of randomized controlled trials. J Nutr. 2003;133(5):1606S–25S.PubMedGoogle Scholar
  30. 30.
    Natale CD, Fabio SD. Fortification of maternal milk. J Pediatr Neonat Individual Med. 2013;2(2):e020224.Google Scholar
  31. 31.
    Bhutta ZA, Ahmed T, Black RE, Cousens S, Dewey K, Giugliani E, Haider BA, Kirkwood B, Morris SS, Sachdev HPS, Shekar M. What works? Interventions for maternal and child under nutrition and survival. Lancet. 2008;371(9610):417–40.CrossRefPubMedGoogle Scholar
  32. 32.
    Benton D. The influence of dietary status on the cognitive performance of children. Mol Nutr Food Res. 2010;54(4):457–70.CrossRefPubMedGoogle Scholar
  33. 33.
    De Souza AS, Fernandes FS, Do Carmo MD. Effects of maternal malnutrition and postnatal nutritional rehabilitation on brain fatty acids, learning and memory. Nutr Rev. 2011;69(3):132–44.CrossRefPubMedGoogle Scholar
  34. 34.
    Schuchardt JP, Huss M, Stauss-Grabo M, Hahn A. Significance of long-chain polyunsaturated fatty acids (PUFAs) for the development and behavior of children. Eur J Pediatr. 2010;169:149–64.CrossRefPubMedGoogle Scholar
  35. 35.
    Jensen RG, Hagerty MM, McMahon KE. Lipids of human milk and infant formulas: a review. Am J Clin Nutr. 1978;31:990–1016.PubMedGoogle Scholar
  36. 36.
    McCann Joyce C, Ames Bruce N. Is docosahexaenoic acid, an n − 3 long-chain polyunsaturated fatty acid, required for development of normal brain function? An overview of evidence from cognitive and behavioral tests in humans and animals. Am J Clin Nutr. 2005;82:281–95.PubMedGoogle Scholar
  37. 37.
    Eilander A, Hundscheid DC, Osendarp SJ, Transler C, Zock PL. Effects of n-3 long chain polyunsaturated fatty acid supplementation on visual and cognitive development throughout childhood: a review of human studies. Prostaglandins Leukot Essent Fatty Acids. 2007;76:189–203.CrossRefPubMedGoogle Scholar
  38. 38.
    Cetin I, Koletzko B. Long-chain [omega]-3 fatty acid supply in pregnancy and lactation. Curr Opin Clin Nutr Metab Care. 2008;11(3):297–302.CrossRefPubMedGoogle Scholar
  39. 39.
    Wurtman RJ. Synapse formation and cognitive brain development: effect of docosahexaenoic acid and other dietary constituents. Metabolism. 2008;57:S6–10.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ramakrishnan U, Imhoff-Kunsch B, DiGirolamo AM. Role of docosahexaenoic acid in maternal and child mental health. Am J Clin Nutr. 2009;89(3):958S–62S.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ryan AS, Astwood JD, Gautier S, Kuratko CN, Nelson EB, Salem N Jr. Effects of long-chain polyunsaturated fatty acid supplementation on neurodevelopment in childhood: a review of human studies. Prostaglandins Leukot Essent Fatty Acids. 2010;82:305–14.CrossRefPubMedGoogle Scholar
  42. 42.
    Schuchardt JP, Huss M, Stauss-Grabo M, Hahn A. Significance of long-chain polyunsaturated fatty acids (PUFAs) for the development and behavior of children. Eur J Pediatr. 2010;169(2):149–64.CrossRefPubMedGoogle Scholar
  43. 43.
    de Souza AS, Fernandes FS, do Carmo MD. Effects of maternal malnutrition and postnatal nutritional rehabilitation on brain fatty acids, learning, and memory. Nutr Rev. 2011;69(3):132–44.CrossRefPubMedGoogle Scholar
  44. 44.
    Simopoulos AP. Evolutionary aspects of omega-3-fatty acids in the food supply. Prostaglandins Leukot Essent Fatty Acids. 1999;60:421–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Simopoulos AP. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Expt Biol Med. 2008;233:674–88.CrossRefGoogle Scholar
  46. 46.
    Daniels JL, Longnecker MP, Rowland AS, Golding J. Fish intake during pregnancy and early cognitive development of offspring. Epidemiology. 2004;15:394–402.CrossRefPubMedGoogle Scholar
  47. 47.
    Hibbeln JR, Davis JM, Steer C, Emmett P, Rogers I, Williams C, Golding J. Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC study): an observational cohort study. Lancet. 2007;369(9561):578–85.CrossRefPubMedGoogle Scholar
  48. 48.
    Jacobson JL, Jacobson SW, Muckle G, Kaplan-Estrin M, Ayotte P, Dewailly E. Beneficial effects of a polyunsaturated fatty acid on infant development: evidence from the inuit of arctic Quebec. J Pediatrics. 2008;152(3):356–64.CrossRefGoogle Scholar
  49. 49.
    Oken E, Osterdal ML, Gillman MW, Knudsen VK, Halldorsson TI, Strøm M, Bellinger DC, Hadders-Algra M, Michaelsen KF, Olsen SF. Associations of maternal fish intake during pregnancy and breastfeeding duration with attainment of developmental milestones in early childhood: a study from the danish national birth cohort. Am J ClinNutr. 2008;88(3):789–96.Google Scholar
  50. 50.
    Oken E, Radesky JS, Wright RO, Bellinger DC, Amarasiriwardena CJ, Kleinman KP, Hu H, Gillman MW. Maternal fish intake during pregnancy, blood mercury levels, and child cognition at age 3 years in a US cohort. Am J Epidemiol. 2008;167(10):1171–81.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Boucher O, Burden MJ, Muckle G, Saint-Amour D, Ayotte P, Dewailly E, Nelson CA, Jacobson SW, Jacobson JL. Neuro physiologic and neuro behavioral evidence of beneficial effects of prenatal omega-3 fatty acid intake on memory function at school age. Am J Clin Nutr. 2011;93:1025–37.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Helland IB, Smith L, Blomen B, Saarem K, Saugstad OD, Drevon CA. Effect of supplementing pregnant and lactating mothers withn-3 very-long-chain fatty acids on children’s IQ and body mass index at 7 years of age. Pediatrics. 2008;122:e472–9.CrossRefPubMedGoogle Scholar
  53. 53.
    Hoffman DR, Boettcher JA, Diersen-Schade DA. Toward optimizing vision and cognition in term infants by dietary docosahexaenoic and arachidonic acid supplementation: a review of randomized controlled trials. Prostaglandins Leukot Essent Fatty Acids. 2009;81:151–8.CrossRefPubMedGoogle Scholar
  54. 54.
    Molinari C, Rise P, Guerra C, Mauro N, Piani C, Bosi E, Galli C, Scavini M. Eight-week consumption of milk enriched with omega 3 fatty acids raises their blood concentrations yet does not affect lipids and cardiovascular disease risk factors in adult healthy volunteers. Pharma Nutr. 2014;2:141–8.Google Scholar
  55. 55.
    Uauy-Dagach R, Mena P. Nutritional role of omega-3 fatty acids during the perinatal period. Clin Perinatol. 1995;22(1):157–75.PubMedGoogle Scholar
  56. 56.
    Ganapathy S. Long chain polyunsaturated fatty acids and immunity in infants. Indian Pediatr. 2009;46(9):785–90.PubMedGoogle Scholar
  57. 57.
    Brenna JT, Varamini B, Jensen RG, Diersen-Schade DA, Boettcher JA, Arterburn LM. Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. Am J Clin Nutr. 2007;85(6):1457–64.PubMedGoogle Scholar
  58. 58.
    Benito P, Caballero J, Moreno J, Gutiérrez-Alcántara C, Muñoz C, Rojo G, Garcia S, Soriguer FC. Effects of milk enriched with ω-3 fatty acid, oleic acid and folic acid in patients with metabolic syndrome. Clin Nutr. 2006;25:581–7.CrossRefPubMedGoogle Scholar
  59. 59.
    Baro L, Fonollá J, Peña JL, Martínez-Férez A, Lucena A, Jiménez J, Boza JJ, López-Huertas E. n-3 Fatty acids plus oleic acid and vitamin supplemented milk consumption reduces total and LDL cholesterol, homocysteine and levels of endothelial adhesion molecules in healthy humans. Clin Nutr. 2003;22(2):175–82.CrossRefPubMedGoogle Scholar
  60. 60.
    Lopez-Huertas E. Health effects of oleic acid and long chain omega-3 fatty acids (EPA and DHA) enriched milks. A review of intervention studies. Pharmacol Res. 2010;61(3):200–7.CrossRefPubMedGoogle Scholar
  61. 61.
    Dangat KD, Kale AA, Joshi SR. Maternal supplementation of omega 3 fatty acids to micronutrient-imbalanced diet improves lactation in rat. Metabolism. 2011;60(9):1318–24.CrossRefPubMedGoogle Scholar
  62. 62.
    Carrero JJ, Baro L, Fonolla J, Gonzalez-Santiago M, Martinez-Ferez A, Castillo R, Jimenez J, Boza JJ, Lopez-Huertas E. Cardiovascular effects of milk enriched with omega-3 polyunsaturated fatty acids, oleic acid, folic acid, and vitamins E and B6 in volunteers with mild hyperlipidemia. Nutrition. 2004;20(6):521–7.CrossRefPubMedGoogle Scholar
  63. 63.
    Padro T, Vilahur G, Sanchez-Hernandez J, Hernandez M, Antonijoan RM, Perez A, Badimon L. Lipidomic changes of LDL in overweight and moderately hypercholesterolemic subjects taking phytosterol- andomega-3-supplemented milk. J Lipid Res. 2015;56(5):1043–56.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Visioli F, Rise P, Plasmati E, Pazzucconi F, Sirtori CR, Galli C. Very low intakes of N-3 fatty acids incorporated into bovine milk reduce plasma triacylglycerol and increase HDL-cholesterol concentrations in healthy subjects. Pharmacol Res. 2000;41(5):571–6.CrossRefPubMedGoogle Scholar
  65. 65.
    Fonolla J, López-Huertas E, Machado FJ, Molina D, Alvarez I, Mármol E, Navas M, Palacín E, García-Valls MJ, Remón B, Boza JJ, Marti JL. Milk enriched with “healthy fatty acids” improves cardiovascular risk markers and nutritional status in human volunteers. Nutrition. 2009;25(4):408–14.CrossRefPubMedGoogle Scholar
  66. 66.
    Garaiova I, Guschina IA, Plummer NT. A randomised cross-over trial in healthy adults indicating improved absorption of omega-3 fatty acids by pre-emulsification. Nutr J. 2007;6:4.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Anand Arvind Zanwar
    • 1
  • Yogesh S. Badhe
    • 1
  • Subhash L. Bodhankar
    • 2
  • Prakash B. Ghorpade
    • 1
  • Mahabaleshwar V. Hegde
    • 1
  1. 1.Center for Innovation in Nutrition Health Disease, Interactive Research School for Health Affairs, Medical College CampusBharati Vidyapeeth Deemed UniversityPuneIndia
  2. 2.Department of Pharmacology, Poona College of PharmacyBharati Vidyapeeth Deemed UniversityPuneIndia

Personalised recommendations