Role of Antioxidants in Human Health

  • Jeganathan Manivannan
  • Thangarasu Silambarasan
  • Janakiraman Shanthakumar
  • Natarajan Suganya
  • Shankar Kanchana


Association of diet with human health and disease has been known for centuries. Because of humans’ geographical origin, the diet and its compositional variability are high among populations. Human diet, including fruits, vegetables, nuts, and other animal sources has rich sources of bioactive molecules and antioxidants. Majority of human diet derived from plant sources, which contains polyphenols including flavonoids and phenolic acids, accounted for 90 %, and most of them possess antioxidant activity. Oxidative stress owing to excess of free radicals not neutralized by antioxidant defense enzymes leads to several degenerative diseases including cardiovascular diseases (CVDs), diabetes, kidney disease, cancer, neurological disorders, obesity, and aging. Hence, antioxidant dietary supplements are the attractive strategy to overcome these diseases. Therefore, in this chapter, we have focused on the overview of diet, antioxidants, and function of various plant antioxidant constituents. Furthermore, we have illustrated the role of oxidative stress on various diseases including CVD, cancer, and diabetes. Beneficial effects of various antioxidants and other antioxidant system stimulators on in vitro and in vivo models are explained. Along with this, we provide notable evidences from clinical trials using antioxidants on various diseases.


Oxidative stress Antioxidant Cardiovascular disease Diabetes Chronic kidney disease Cancer Neurodegenerative disease 


  1. 1.
    Ndhlala AR, Moyo M, Van Staden J. Natural antioxidants: fascinating or mythical biomolecules? Molecules. 2010;15:6905–30.PubMedCrossRefGoogle Scholar
  2. 2.
    Renaud S, de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet. 1992;339:1523–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Artaud-Wild SM, Connor SL, Sexton G, Connor WE. Differences in coronary mortality can be explained by differences in cholesterol and saturated fat intakes in 40 countries but not in France and Finland. A Paradox. Circulation. 1993;88:2771–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Richard JL, Cambien F, Ducimetière P. Epidemiologic characteristics of coronary disease in France. NouvPresse Med. 1981;10:1111–4.Google Scholar
  5. 5.
    Ferrières J. The French paradox: lessons for other countries. Heart. 2004;90:107–11.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Keys A, Menotti A, Karvonen MJ, Aravanis C, Blackburn H, Buzina R, Djordjevic BS, Dontas AS, Fidanza F, Keys MH, et al. The diet and 15-year death rate in the seven countries study. Am J Epidemiol. 1986;124:903–15.PubMedGoogle Scholar
  7. 7.
    Pandey KM, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev. 2009;2:270–8.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci. 2008;4:89–96.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Nathan C, Cunningham-Bussel A. Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol. 2013;13:349–3461.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Carlsen MH, Halvorsen BL, Holte K, Bøhn SK, Dragland S, Sampson L, et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J. 2010;9:3.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Papas AM. Diet and antioxidant status. Food Chem Toxicol. 1999;37:999–1007.PubMedCrossRefGoogle Scholar
  12. 12.
    Li S, Chen G, Zhang C, Wu M, Wu S, Liu Q. Research progress of natural antioxidants in foods for the treatment of diseases. Food Sci Hum Wellness. 2014;. doi: 10.1016/j.fshw.2014.11.002.Google Scholar
  13. 13.
    Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79:727–7247.PubMedGoogle Scholar
  14. 14.
    Leopoldini M, Russo N, Toscano M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 2011;125:288–306.CrossRefGoogle Scholar
  15. 15.
    Beckman CH. Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants? Physiol Mol Plant Pathol. 2000;57:101–10.CrossRefGoogle Scholar
  16. 16.
    Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Bio Chem. 2002;13:572–84.CrossRefGoogle Scholar
  17. 17.
    Hammerstone JF, Lazarus SA, Schmitz HH. Procyanidin content and variation in some commonly consumed foods. J Nutr. 2000;130:2086S–92S.PubMedGoogle Scholar
  18. 18.
    Ferrali M, Signorini C, Caciotti B, Sugherini L, Ciccoli L, Giachetti D, Comporti M. Protection against oxidative damage of erythrocyte membrane by the flavonoid quercetin and its relation to iron chelating activity. FEBS Lett. 1997;416:123–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Elliott AJ, Scheiber SA, Thomas C, Pardini RS. Inhibition of glutathione reductase by flavonoids. A structure-activity study. Biochem Pharmacol. 1992;44:1603–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Hirano R, Sasamoto W, Matsumoto A, Itakura H, Igarashi O, Kondo K. Antioxidant ability of various flavonoids against DPPH radicals and LDL oxidation. J Nutr Sci Vitaminol (Tokyo). 2001;47:357–62.PubMedCrossRefGoogle Scholar
  21. 21.
    Cos P, Ying L, Calomme M, Hu JP, Cimanga K, Van Poel B, et al. Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J Nat Prod. 1998;61:71–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Deaton C, Froelicher ES, Wu LH, Ho C, Shishani K, Jaarsma T. The global burden of cardiovascular disease. Eur J Cardiovasc Nurs. 2011;10:S5–13.PubMedCrossRefGoogle Scholar
  23. 23.
    Jefferies JL, Towbin JA. Dilated cardiomyopathy. Lancet. 2010;375:752–62.PubMedCrossRefGoogle Scholar
  24. 24.
    Olson EN. A decade of discoveries in cardiac biology. Nat Med. 2004;10:467–74.PubMedCrossRefGoogle Scholar
  25. 25.
    Grassi D, Desideri G, Ferri C. Flavonoids: antioxidants against the rosclerosis. Nutrients. 2010;2:889–902.Google Scholar
  26. 26.
    Baradaran A, Nasri H, Rafieian-Kopaei M. Oxidative stress and hypertension: Possibility of hypertension therapy with antioxidants. J Res Med Sci. 2014;19:358–67.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Ames BN. Dietary carcinogens and anti-carcinogens. Science. 1983;221:1256–64.PubMedCrossRefGoogle Scholar
  28. 28.
    Frei B. Reactive oxygen species and antioxidant vitamins: mechanisms of action. Am J Med. 1994;97:5S–13S.PubMedCrossRefGoogle Scholar
  29. 29.
    Diplock AT. Antioxidant nutrients and disease prevention: an overview. Am J ClinNutr. 1991;53:189S–93S.Google Scholar
  30. 30.
    Stephens NG, Parsons A, Schofield PM, Kelly F, Cheeseman K, Mitchinson MJ. Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet. 1996;347:781–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Boaz M, Smetana S, Weinstein T, Matas Z, Gafter U, Iaina A, et al. Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): randomised placebo-controlled trial. Lancet. 2000;356:1213–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Salonen JT, Nyyssönen K, Salonen R, Lakka HM, Kaikkonen J, Porkkala-Sarataho E, et al. Antioxidant Supplementation in Atherosclerosis Prevention (ASAP) study: a randomized trial of the effect of vitamins E and C on 3-year progression of carotid atherosclerosis. J Intern Med. 2000;248:377–86.PubMedCrossRefGoogle Scholar
  33. 33.
    Fang JC, Kinlay S, Beltrame J, Hikiti H, Wainstein M, Behrendt D, et al. Effect of vitamins C and E on progression of transplant-associated arteriosclerosis: a randomised trial. Lancet. 2002;359:1108–13.PubMedCrossRefGoogle Scholar
  34. 34.
    John JH, Ziebland S, Yudkin P, Roe LS, Neil HA, Oxford Fruit and Vegetable Study Group. Effects of fruit and vegetable consumption on plasma antioxidant concentrations and blood pressure: a randomised controlled trial. Lancet. 2002;359:1969–74.PubMedCrossRefGoogle Scholar
  35. 35.
    Raja B, Kaviarasan K, Arjunan MM, Pugalendi KV. Effect of Melothriamaderaspatana leaf-tea consumption on blood pressure, lipid profile, anthropometry, fibrinogen, bilirubin, and albumin levels in patients with hypertension. J Altern Complement Med. 2007;13:349–54.PubMedCrossRefGoogle Scholar
  36. 36.
    Raja B, Pugalendi KV. Evaluation of antioxidant activity of Melothriamaderaspatana in vitro. Cent Eur J Biol. 2010;5:224–30.Google Scholar
  37. 37.
    Engler MM, Engler MB, Malloy MJ, Chiu EY, Schloetter MC, Paul SM, et al. Antioxidant vitamins C and E improve endothelial function in children with hyperlipidemia: Endothelial Assessment of Risk from Lipids in Youth (EARLY) Trial. Circulation. 2003;108:1059–63.PubMedCrossRefGoogle Scholar
  38. 38.
    Grebe M, Eisele HJ, Weissmann N, Schaefer C, Tillmanns H, Seeger W, Schulz R. Antioxidant vitamin C improves endothelial function in obstructive sleep apnea. Am J Respir Crit Care Med. 2006;173:897–901.PubMedCrossRefGoogle Scholar
  39. 39.
    Ye Y, Li J, Yuan Z. Effect of antioxidant vitamin supplementation on cardiovascular outcomes: a meta-analysis of randomized controlled trials. PLoS ONE. 2013;8:e56803.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Silambarasan T, Raja B. Diosmin, a bioflavonoid reverses alterations in blood pressure, nitric oxide, lipid peroxides and antioxidant status in DOCA-salt induced hypertensive rats. Eur J Pharmacol. 2012;679:81–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Senthamizhselvan O, Manivannan J, Silambarasan T, Raja B. Diosmin pretreatment improves cardiac function and suppresses oxidative stress in rat heart after ischemia/reperfusion. Eur J Pharmacol. 2014;736:131–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Prahalathan P, Kumar S, Raja B. Morin attenuates blood pressure and oxidative stress in deoxycorticosterone acetate-salt hypertensive rats: a biochemical and histopathological evaluation. Metabolism. 2012;61:1087–99.PubMedCrossRefGoogle Scholar
  43. 43.
    Silambarasan T, Manivannan J, Krishna Priya M, Suganya N, Chatterjee S, Raja B. Sinapic Acid prevents hypertension and cardiovascular remodeling in pharmacological model of nitric oxide inhibited rats. PLoS ONE. 2014;9:e115682.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Saravanakumar M, Raja B. Veratric acid, a phenolic acid attenuates blood pressure and oxidative stress in L-NAME induced hypertensive rats. Eur J Pharmacol. 2011;671:87–94.PubMedCrossRefGoogle Scholar
  45. 45.
    Kumar S, Prahalathan P, Raja B. Syringic acid ameliorates (L)-NAME-induced hypertension by reducing oxidative stress. Naunyn-Schmiedebergs Arch Pharmacol. 2012;385:1175–84.PubMedCrossRefGoogle Scholar
  46. 46.
    Kumar S, Prahalathan P, Raja B. Vanillic acid: a potential inhibitor of cardiac and aortic wall remodeling in l-NAME induced hypertension through upregulation of endothelial nitric oxide synthase. Environ Toxicol Pharmacol. 2014;38:643–52.PubMedCrossRefGoogle Scholar
  47. 47.
    Muhammad SA, Bilbis LS, Saidu Y, Adamu Y. Effect of antioxidant mineral elements supplementation in the treatment of hypertension in albino rats. Oxidative Medicine and Cellular Longevity. 2012;2012:8 p.Google Scholar
  48. 48.
    Wang HH, Hung TM, Wei J, Chiang AN. Fish oil increases antioxidant enzyme activities in macrophages and reduces atherosclerotic lesions in apoE-knockout mice. Cardiovasc Res. 2004;61:169–76.PubMedCrossRefGoogle Scholar
  49. 49.
    Wu X, Kang J, Xie C, Burris R, Ferguson ME, Badger TM, et al. Dietary blueberries attenuate atherosclerosis in apolipoprotein E-deficient mice by upregulating antioxidant enzyme expression. J Nutr. 2010;140:1628–32.PubMedCrossRefGoogle Scholar
  50. 50.
    Fernández-Robredo P, Sádaba LM, Salinas-Alamán A, Recalde S, Rodríguez JA, García-Layana A. Effect of Lutein and Antioxidant Supplementation on VEGF Expression, MMP-2 Activity, and Ultrastructural Alterations in Apolipoprotein E-Deficient Mouse. Oxid Med Cell Longev. 2013;2013:Article ID 213505, 11 p.Google Scholar
  51. 51.
    Chambers DJ. Oxidative stress injury during cardiac surgery: How important is it? Cardiovasc Res. 2007;73:626–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Dhalla NS, Elmoselhi AB, Hata T, Makino N. Status of myocardial antioxidants in ischemia–reperfusion injury. Cardiovasc Res. 2000;47:446–56.PubMedCrossRefGoogle Scholar
  53. 53.
    Silambarasan T, Manivannan J, Krishna Priya M, Suganya N, Chatterjee S, Raja B. Sinapic acid protects heart against ischemia/reperfusion injury and H9c2 cardiomyoblast cells against oxidative stress. Biochem Biophys Res Commun. 2015;456:853–859.Google Scholar
  54. 54.
    Ozeren M, Sucu N, Tamer L, Aytacoglu B, Bayri O, Döndaş A, Ayaz L, Dikmengil M. Caffeic acid phenethyl ester (CAPE) supplemented St. Thomas’ hospital cardioplegic solution improves the antioxidant defense system of rat myocardium during ischemia-reperfusion injury. Pharmacol Res. 2005;52:258–63.PubMedCrossRefGoogle Scholar
  55. 55.
    Schröder C, Heintz A, Pexa A, Rauen U, Deussen A. Preclinical evaluation of coronary vascular function after cardioplegia with HTK and different antioxidant additives. Eur J Cardiothorac Surg. 2007;31:821–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Fischer UM, Antonyan A, Bloch W, Mehlhorn U. Impact of antioxidative treatment on nuclear factor kappa-B regulation during myocardial ischemia-reperfusion. Interact Cardiovasc Thorac Surg. 2006;5:531–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Guariguata L. By the numbers: new estimates from the IDF Diabetes Atlas Update for 2012. Diabetes Res Clin Pr. 2012;98:524–5.CrossRefGoogle Scholar
  58. 58.
    Wolfram S. Effects of green tea and EGCG on cardiovascular and metabolic health. J Am CollNutr. 2007;26:373S–88S.Google Scholar
  59. 59.
    Toolsee NA, Aruoma OI, Gunness TK, Kowlessur S, Dambala V, Murad F, et al. Effectiveness of green tea in a randomized human cohort: relevance to diabetes and its complications. Biomed Res Int. 2013;2013:Article ID 412379, 12 p.Google Scholar
  60. 60.
    Harris M, Zimmet P. Classification of diabetes mellitus and other categories of glucose intolerance. In: Alberti K, Zimmet P, Defronzo R, editors. International textbook of diabetes mellitus. Chichester: Wiley; 1997. p. 9–23.Google Scholar
  61. 61.
    Johansen JS, Harris AK, Rychly DJ, Ergul A. Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc Diabetol. 2005;4:5.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Wei M, Ong L, Smith MT, Ross FB, Schmid K, Hoey AJ, et al. The streptozotocin-diabetic rat as a model of the chronic complications of human diabetes. Heart Lung Circ. 2003;12:44–50.PubMedCrossRefGoogle Scholar
  63. 63.
    Kumar S, Prasad S, Sitasawad SL. Multiple antioxidants improve cardiac complications and inhibit cardiac cell death in streptozotocin-induced diabetic rats. PLoS ONE. 2013;8:e67009.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Kedziora-Kornatowska KZ, Luciak M, Paszkowski J. Lipid peroxidation and activities of antioxidant enzymes in the diabetic kidney: effect of treatment with angiotensin convertase inhibitors. IUBMB Life. 2000;49:303–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Baydas G, Reiter RJ, Yasar A, Tuzcu M, Akdemir I, Nedzvetskii VS. Melatonin reduces glial reactivity in the hippocampus, cortex, and cerebellum of streptozotocin-induced diabetic rats. Free RadicBiol Med. 2003;35:797–804.CrossRefGoogle Scholar
  66. 66.
    Rahimi R, Nikfar S, Larijani B, Abdollahi M. A review on the role of antioxidants in the management of diabetes and its complications. Biomed Pharmacother. 2005;59:365–73.PubMedCrossRefGoogle Scholar
  67. 67.
    Kähkönen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, Heinonen M. Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem. 1999;47:3954–62.PubMedCrossRefGoogle Scholar
  68. 68.
    Bahadoran Z, Mirmiran P, Azizi F. Dietary polyphenols as potential nutraceuticals in management of diabetes: a review. J Diabetes Metab Disord. 2013;12:43.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Cinar MG, Ulker S, Alper G, Evinç A. Effect of dietary vitamin E supplementation on vascular reactivity of thoracic aorta in streptozotocin-diabetic rats. Pharmacology. 2001;62:56–64.PubMedCrossRefGoogle Scholar
  70. 70.
    Kedziora-Kornatowska K, Szram S, Kornatowski T, Szadujkis-Szadurski L, Kedziora J, Bartosz G. Effect of vitamin E and vitamin C supplementation on antioxidative state and renal glomerular basement membrane thickness in diabetic kidney. Nephron Exp Nephrol. 2003;95:e134–43.PubMedCrossRefGoogle Scholar
  71. 71.
    Brands MW, Bell TD, Gibson B. Nitric oxide may prevent hypertension early in diabetes by counteracting renal actions of superoxide. Hypertension. 2004;43:57–63.PubMedCrossRefGoogle Scholar
  72. 72.
    Randazzo J, Zhang P, Makita J, Blessing K, Kador PF. Orally active multi-functional antioxidants delay cataract formation in streptozotocin (type 1) diabetic and gamma-irradiated rats. PLoS ONE. 2011;6:e18980.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Jin CJ, Yu SH, Wang XM, Woo SJ, Park HJ, Lee HC, et al. The effect of lithospermic acid, an antioxidant, on development of diabetic retinopathy in spontaneously obese diabetic rats. PLoS ONE. 2014;9:e98232.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Srinivasan S, Pari L. Ameliorative effect of diosmin, a citrus flavonoid against streptozotocin-nicotinamide generated oxidative stress induced diabetic rats. ChemBiol Interact. 2012;195:43–51.CrossRefGoogle Scholar
  75. 75.
    Rajarajeswari N, Pari L. Antioxidant role of coumarin on streptozotocin-nicotinamide-induced type 2 diabetic rats. J BiochemMolToxicol. 2011;25:355–61.Google Scholar
  76. 76.
    Sankaranarayanan C, Pari L. Thymoquinone ameliorates chemical induced oxidative stress and β-cell damage in experimental hyperglycemic rats. ChemBiol Interact. 2011;190:148–54.CrossRefGoogle Scholar
  77. 77.
    Reljanovic M, Reichel G, Rett K, Lobisch M, Schuette K, Möller W, et al. Treatment of diabetic polyneuropathy with the antioxidant thioctic acid (alpha-lipoic acid): a two year multicenter randomized double-blind placebo-controlled trial (ALADIN II). Alpha Lipoic Acid in Diabetic Neuropathy. Free Radic Res. 1999;31:171–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Ziegler D, Hanefeld M, Ruhnau KJ, Hasche H, Lobisch M, Schütte K. Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a 7-month multicenter randomized controlled trial (ALADIN III Study). ALADIN III Study Group. Alpha-Lipoic Acid in Diabetic Neuropathy. Diab Care. 1999;22:1296–301.CrossRefGoogle Scholar
  79. 79.
    Beckman JA, Goldfine AB, Gordon MB, Garrett LA, Keaney JF Jr, Creager MA. Oral antioxidant therapy improves endothelial function in type 1 but not type 2 diabetes mellitus. Am J Physiol Heart Circ Physiol. 2003;285:H2392–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Gaede P, Poulsen HE, Parving HH, Pedersen O. Double-blind, randomised study of the effect of combined treatment with vitamin C and E on albuminuria in Type 2 diabetic patients. Diab Med. 2001;18:756–60.CrossRefGoogle Scholar
  81. 81.
    Couser WG, Remuzzi G, Mendis S, Tonelli M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int. 2011;80:1258–70.PubMedCrossRefGoogle Scholar
  82. 82.
    McDonald S, Excell L, Livingston B. ANZDATA Registry 2010 Report 2010. Accessed 6 May 2011.
  83. 83.
    Raine AE, Margreiter R, Brunner FP, Ehrich JH, Geerlings W, Landais P, et al. Report on management of renal failure in Europe, XXII, 1991. Nephrol Dial Transplant. 1992;7:7–35.PubMedGoogle Scholar
  84. 84.
    Morena M, Delbosc S, Dupuy AM, Canaud B, Cristol JP. Overproduction of reactive oxygen species in end-stage renal disease patients: a potential component of hemodialysis-associated inflammation. Hemodial Int. 2005;9:37–46.PubMedCrossRefGoogle Scholar
  85. 85.
    Ikizler TA, Morrow JD, Roberts LJ, Evanson JA, Becker B, Hakim RM, et al. Plasma F2-isoprostane levels are elevated in chronic hemodialysis patients. Clin Nephrol. 2002;58:190–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Cross JM, Donald AE, Nuttall SL, Deanfield JE, Woolfson RG, Macallister RJ. Vitamin C improves resistance but not conduit artery endothelial function in patients with chronic renal failure. Kidney Int. 2003;63:1433–42.PubMedCrossRefGoogle Scholar
  87. 87.
    Tbahriti HF, Kaddous A, Bouchenak M, Mekki K. Effect of different stages of chronic kidney disease and renal replacement therapies on oxidant-antioxidant balance in uremic patients. Biochem Res Int. 2013;2013: Article ID 358985, 6 p.Google Scholar
  88. 88.
    Ali BH, Al-Salam S, Al Husseni I, Kayed RR, Al-Masroori N, Al-Harthi T, Al Zaabi M, et al. Effects of Gum Arabic in rats with adenine-induced chronic renal failure. Exp Biol Med (Maywood). 2010;235:373–82.PubMedCrossRefGoogle Scholar
  89. 89.
    Ali BH, Al-Husseni I, Beegam S, Al-Shukaili A, Nemmar A, et al. Effect of Gum Arabic on oxidative stress and inflammation in adenine-induced chronic renal failure in rats. PLoS ONE. 2013;8:e55242.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Manivannan J, Barathkumar TR, Sivasubramanian J, Arunagiri P, Raja B, Balamurugan E. Diosgenin attenuates vascular calcification in chronic renal failure rats. Mol Cell Biochem. 2013;378:9–18.PubMedCrossRefGoogle Scholar
  91. 91.
    Manivannan J, Balamurugan E, Silambarasan T, Raja B. Diosgenin improves vascular function by increasing aortic eNOS expression, normalize dyslipidemia and ACE activity in chronic renal failure rats. Mol Cell Biochem. 2013;384:113–20.PubMedCrossRefGoogle Scholar
  92. 92.
    Coombes JS, Fassett RG. Antioxidant therapy in hemodialysis patients: a systematic review. Kidney Int. 2012;81:233–46.PubMedCrossRefGoogle Scholar
  93. 93.
    Jun M, Venkataraman V, Razavian M, Cooper B, Zoungas S, Ninomiya T, Webster AC, Perkovic V. Antioxidants for chronic kidney disease. Cochrane Database Syst Rev. 2012;10:CD008176.Google Scholar
  94. 94.
    International Agency for Research on Cancer (2008) World cancer report 2008.Google Scholar
  95. 95.
    Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic Biol Med. 2010;49:1603–16.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Sosa V, Moliné T, Somoza R, Paciucci R, Kondoh H. LLeonart ME. Oxidative stress and cancer: an overview. Ageing Res Rev. 2013;12:376–90.PubMedCrossRefGoogle Scholar
  97. 97.
    Boyer J, Liu RH. Apple phytochemicals and their health benefits. Nutr J. 2004;3:5.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Winn DM, Ziegler RG, Pickle LW, Gridley G, Blot WJ, Hoover RN. Diet in the etiology of oral and pharyngeal cancer among women from the southern United States. Cancer Res. 1984;44:1216–22.PubMedGoogle Scholar
  99. 99.
    Chuang SC, Jenab M, Heck JE, Bosetti C, Talamini R, Matsuo K, et al. Diet and the risk of head and neck cancer: a pooled analysis in the INHANCE consortium. Cancer Causes Control. 2011;23:69–88.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Iriti M, Varoni EM. Chemopreventive potential of flavonoids in oral squamous cell carcinoma in human studies. Nutrients. 2013;5:2564–76.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Katiyar SK, Mukhtar H. Tea antioxidants in cancer chemoprevention. J Cell Biochem Suppl. 1997;27:59–67.PubMedCrossRefGoogle Scholar
  102. 102.
    Singh RP, Agarwal R. Flavonoid antioxidant silymarin and skin cancer. Antioxid Redox Signal. 2002;4:655–63.PubMedCrossRefGoogle Scholar
  103. 103.
    Vinh PQ, Sugie S, Tanaka T, Hara A, Yamada Y, Katayama M, et al. Chemopreventive effects of a flavonoid antioxidant silymarin on N-butyl-N-(4-hydroxybutyl)nitrosamine-induced urinary bladder carcinogenesis in male ICR mice. Jpn J Cancer Res. 2002;93:42–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Balasenthil S, Ramachandran CR, Nagini S. S-allylcysteine, a garlic constituent, inhibits 7,12-dimethylbenz[a]anthracene-induced hamster buccal pouch carcinogenesis. Nutr Cancer. 2001;40:165–72.PubMedCrossRefGoogle Scholar
  105. 105.
    Balakrishnan S, Menon VP, Manoharan S. Ferulic acid inhibits 7,12-dimethylbenz[a]anthracene-induced hamster buccal pouch carcinogenesis. J Med Food. 2008;11:693–700.PubMedCrossRefGoogle Scholar
  106. 106.
    Anusuya C, Manoharan S. Antitumor initiating potential of rosmarinic acid in 7,12-dimethylbenz(a)anthracene-induced hamster buccal pouch carcinogenesis. J Environ PatholToxicolOncol. 2011;30:199–211.Google Scholar
  107. 107.
    Manoharan S, Sindhu G, Vinothkumar V, Kowsalya R. Berberine prevents 7,12-dimethylbenz[a]anthracene-induced hamster buccal pouch carcinogenesis: a biochemical approach. Eur J Cancer Prev. 2012;21:182–92.PubMedCrossRefGoogle Scholar
  108. 108.
    Manoharan S, Singh AK, Suresh K, Vasudevan K, Subhasini R, Baskaran N. Anti-tumor initiating potential of andrographolide in 7,12-dimethylbenz[a]anthraceneinduced hamster buccal pouch carcinogenesis. Asian Pac J Cancer Prev. 2012;13:5701–8.PubMedCrossRefGoogle Scholar
  109. 109.
    Manoharan S, Balakrishnan S, Menon VP, Alias LM, Reena AR. Chemopreventive efficacy of curcumin and piperine during 7,12-dimethylbenz[a]anthracene-induced (DMBA) hamster buccal pouch carcinogenesis. Singapore Med J. 2009;50:139–46.PubMedGoogle Scholar
  110. 110.
    Moon TE, Levine N, Cartmel B, Bangert JL, Rodney S, Dong Q, et al. Effect of retinol in preventing squamous cell skin cancer in moderate-risk subjects: a randomized, double-blind, controlled trial. Southwest Skin Cancer Prevention Study Group. Cancer Epidemiol Biomarkers Prev. 1997;6:949–56.PubMedGoogle Scholar
  111. 111.
    Clark LC, Combs GF Jr, Turnbull BW, Slate EH, Chalker DK, Chow J, et al. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group. JAMA. 1996;276:1957–63.PubMedCrossRefGoogle Scholar
  112. 112.
    Mooney LA, Madsen AM, Tang D, Orjuela MA, Tsai WY, Garduno ER, et al. Antioxidant vitamin supplementation reduces benzo(a)pyrene-DNA adducts and potential cancer risk in female smokers. Cancer Epidemiol Biomarkers Prev. 2005;14:237–42.PubMedGoogle Scholar
  113. 113.
    Watters JL, Gail MH, Weinstein SJ, Virtamo J, Albanes D. Associations between alpha-tocopherol, beta-carotene, and retinol and prostate cancer survival. Cancer Res. 2009;69:3833–41.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Lippman SM, Klein EA, Goodman PJ, Lucia MS, Thompson IM, Ford LG, et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the selenium and vitamin E Cancer Prevention Trial (SELECT). JAMA. 2009;301:39–51.PubMedCrossRefGoogle Scholar
  115. 115.
    Lai GY, Weinstein SJ, Taylor PR, McGlynn KA, Virtamo J, Gail MH, et al. Effects of α-tocopherol and β-carotene supplementation on liver cancer incidence and chronic liver disease mortality in the ATBC study. Br J Cancer. 2014;111:2220–3.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Block KI, Koch AC, Mead MN, Tothy PK, Newman RA, Gyllenhaal C. Impact of antioxidant supplementation on chemotherapeutic efficacy: a systematic review of the evidence from randomized controlled trials. Cancer Treat Rev. 2007;33:407–18.PubMedCrossRefGoogle Scholar
  117. 117.
    Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 2013;12:931–47.PubMedCrossRefGoogle Scholar
  118. 118.
    Eriksen JL, Petrucelli L. Parkinson’s disease-molecular mechanisms of disease. Drug Discov Today Dis Mech. 2004;1:399–405.CrossRefGoogle Scholar
  119. 119.
    Singh N, Pillay V, Choonara YE. Advances in the treatment of Parkinson’s disease. ProgNeurobiol. 2007;81:29–44.Google Scholar
  120. 120.
    Selvakumar GP, Janakiraman U, Essa MM, Justin Thenmozhi A, Manivasagam T. Escin attenuates behavioral impairments, oxidative stress and inflammation in a chronic MPTP/probenecid mouse model of Parkinson’s disease. Brain Res. 2014;1585:23–36.PubMedCrossRefGoogle Scholar
  121. 121.
    Castellani RJ, Rolston RK, Smith MA. Alzheimer disease. Dis Mon. 2010;56:484–546.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Kalaria RN, Maestre GE, Arizaga R, Friedland RP, Galasko D, Hall K, et al. Alzheimer’s disease and vascular dementia in developing countries: prevalence, management, and risk factors. Lancet Neurol. 2008;7:812–26.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Bertram L, Tanzi RE. Thirty years of Alzheimer’s disease genetics: the implications of systematic meta-analyses. Nat Rev Neurosci. 2008;9:768–78.PubMedCrossRefGoogle Scholar
  124. 124.
    Reddy VP, Zhu XW, Perry G, Smith MA. Oxidative stress in diabetes and Alzheimer’ diaease. J Alzheimer Dis. 2009;16:763–74.Google Scholar
  125. 125.
    Tinahones FJ, Murri-Pierri M, Garrido-Sánchez L, García-Almeida JM, García-Serrano S, García-Arnés J, et al. Oxidative stress in severely obese persons is greater in those with insulin resistance. Obesity. 2009;17:240–6.PubMedCrossRefGoogle Scholar
  126. 126.
    Jenner P. Oxidative stress in Parkinson’s disease. Ann Neurol. 2003;53:26–36.CrossRefGoogle Scholar
  127. 127.
    Gilgun-Sherki Y, Melamed E, Offen D. Antioxidant treatment in Alzheimer’s disease: current state. J Mol Neurosci. 2003;21:1–11.PubMedCrossRefGoogle Scholar
  128. 128.
    Tamilselvam K, Braidy N, Manivasagam T, Essa MM, Rajendra Prasad N, Karthikeyan S, et al. Neuroprotective Effects of hesperidin, a plant flavanone, on rotenone-induced oxidative stress and apoptosis in a cellular model for Parkinson’s disease. Oxid Med Cell Longev. 2013;2013:Article ID 102741, 11 pp.Google Scholar
  129. 129.
    Siedlak SL, Casadesus G, Webber KM, Pappolla MA, Atwood CS, Smith MA, et al. Chronic antioxidant therapy reduces oxidative stress in a mouse model of Alzheimer’s disease. Free Radic Res. 2009;43:156–64.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Rajasankar S, Manivasagam T, Surendran S. Ashwagandha leaf extract: a potential agent in treating oxidative damage and physiological abnormalities seen in a mouse model of Parkinson’s disease. Neurosci Lett. 2009;454:11–5.PubMedCrossRefGoogle Scholar
  131. 131.
    Casetta I, Govoni V, Granieri E. Oxidative stress, antioxidants and neurodegenerative diseases. Curr Pharm Des. 2005;11:2033–52.PubMedCrossRefGoogle Scholar
  132. 132.
    Feng Y, Wang X. Antioxidant therapies for Alzheimer’s disease. Oxid Med Cell Longev. 2012;2012:Article ID 472932, 17 pp.Google Scholar
  133. 133.
    Dai Q, Borenstein AR, Wu Y, Jackson JC, Larson EB. Fruit and vegetable juices and Alzheimer’s disease: the Kame Project. Am J Med. 2006;119:751–9.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Mishra S, Palanivelu K. The effect of curcumin (turmeric) on Alzheimer’s disease: an overview. Ann Indian Acad Neurol. 2008;11:13–9.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Grundman M. Vitamin E and Alzheimer disease: the basis for additional clinical trials. Am J Clin Nutr. 2000;71:630S–6S.PubMedGoogle Scholar
  136. 136.
    Lin SJ, Austriaco N. Aging and cell death in the other yeasts, Schizosaccharomycespombe and Candida albicans. FEMS Yeast Res. 2014;14:119–35.PubMedCrossRefGoogle Scholar
  137. 137.
    Książek K. Let’s stop overlooking bacterial aging. Biogerontology. 2010;11:717–23.PubMedCrossRefGoogle Scholar
  138. 138.
    World Alzheimer Report, Alzheimer’s Disease International,
  139. 139.
    Ashok BT, Ali R. The aging paradox: free radical theory of aging. ExpGerontol. 1999;34:293–303.Google Scholar
  140. 140.
    Rattan SI, Kryzch V, Schnebert S, Perrier E, Nizard C. Hormesis-based anti-aging products: a case study of a novel cosmetic. Dose Response. 2013;11:99–108.PubMedCrossRefGoogle Scholar
  141. 141.
    Cantuti-Castelvetri I, Shukitt-Hale B, Joseph JA. Neurobehavioral aspects of antioxidants in aging. Int J DevNeurosci. 2000;18:367–81.Google Scholar
  142. 142.
    Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev. 2010;4:118–26.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Wang HH, Chowdhury KK, Lautt WW. a synergistic, balanced antioxidant cocktail, protects aging rats from insulin resistance and Absence of Meal-Induced Insulin Sensitization (AMIS) Syndrome. Molecules. 2015;20:669–82.PubMedCrossRefGoogle Scholar
  144. 144.
    Rodríguez MI, Escames G, López LC, López A, García JA, Ortiz F, et al. Improved mitochondrial function and increased life span after chronic melatonin treatment in senescent prone mice. ExpGerontol. 2008;43:749–56.Google Scholar
  145. 145.
    Kitani K, Osawa T, Yokozawa T. The effects of tetrahydrocurcumin and green tea polyphenol on the survival of male C57BL/6 mice. Biogerontology. 2007;8:567–73.PubMedCrossRefGoogle Scholar
  146. 146.
    Grünz G, Haas K, Soukup S, Klingenspor M, Kulling SE, Daniel H, et al. Structural features and bioavailability of four flavonoids and their implications for lifespan-extending and antioxidant actions in C. elegans. Mech Ageing Dev. 2012;133:1–10.PubMedCrossRefGoogle Scholar
  147. 147.
    Suckow BK, Suckow MA. Lifespan extension by the antioxidant curcumin in Drosophila melanogaster. Int J Biomed Sci. 2006;2:402–5.PubMedPubMedCentralGoogle Scholar
  148. 148.
    Bahadorani S, Hilliker AJ. Cocoa confers life span extension in Drosophila melanogaster. Nutr Res. 2008;28:377–82.PubMedCrossRefGoogle Scholar
  149. 149.
    Fleenor BS, Sindler AL, Marvi NK, Howell KL, Zigler ML, Yoshizawa M, et al. Curcumin ameliorates arterial dysfunction and oxidative stress with aging. ExpGerontol. 2013;48:269–76.Google Scholar
  150. 150.
    Sharma NK, Ahirwar D, Jhade D, Jain VK. In-vitro anti-obesity assay of alcoholic and aqueous extracts of Camellia sinensis leaves. Int J Pharm Sci Res. 2012;3:1863–6.Google Scholar
  151. 151.
    Birari RB, Javia V, Bhutani KK. Antiobesity and lipid lowering effects of Murrayakoenigii (L.) Spreng leaves extracts and mahanimbine on high fat diet induced obese rats. Fitoterapia. 2010;81:1129–33.PubMedCrossRefGoogle Scholar
  152. 152.
    Melnikova I, Wages D. Anti-obesity therapies. Nat Rev Drug Discov. 2006;5:369–70.PubMedCrossRefGoogle Scholar
  153. 153.
    Khoddami A, Wilkes MA, Roberts TH. Techniques for analysis of plant phenolic compounds. Molecules. 2013;18:2328–75.PubMedCrossRefGoogle Scholar
  154. 154.
    Kim SK, Kim YM, Hong MJ, Rhee HI. Studies on the inhibitory effect of Eugenia aromaticum extract on pancreatic lipase. Agric Chem Biotechnol. 2005;48:84–8.Google Scholar
  155. 155.
    Mariswamy Y, Gnaraj WE, Antonisamy JM. Chromatographic fingerprint analysis on flavonoids constituents of the medicinally important plant Aervalanata L. by HPTLC technique. Asian Pac J Trop Biomed. 2011;1(Suppl 1):S8–12.CrossRefGoogle Scholar
  156. 156.
    Mashmoul M, Azlan A, Khaza’ai H, Yusof BNM, Noor SM. A natural potent antioxidant as a promising anti-obesity drug. Antioxidants. 2013;2:293–308.Google Scholar
  157. 157.
    Devalaraja S, Jain S, Yadav H. Exotic fruits as therapeutic complements for diabetes, obesity and metabolic syndrome. Food Res Int. 2011;44:1856–65.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Saravanan S, Srikumar R, Manikandan S, Parthasarathy NJ, Devi RS. Hypolipidemic effect of triphala in experimentally induced hypercholesteremic rats. Yakugaku Zasshi J Pharm Soc Jpn. 2007;127:385–8.CrossRefGoogle Scholar
  159. 159.
    Singh RB, Niaz MA, Rastogi V, Singh N, Postiglione A, Rastogi SS. Hypolipidemic and antioxidant effects of fenugreek seeds and triphala as adjuncts to dietary therapy in patients with mild to moderate hypercholesterolemia. Perfusion. 1998;11:124.Google Scholar
  160. 160.
    Gariballa S, Afandi B, AbuHaltem M, Yassin J, Habib H Ibrahim W. Oxidative damage and inflammation in obese diabetic Emirati subjects supplemented with antioxidants and B-vitamins: a randomized placebo-controlled trail. Nutr Metab. 2013;10:21.Google Scholar
  161. 161.
    Sabzghabaee AM, Kelishadi R, Jelokhanian H, Asgary S, Ghannadi A, Badri S. Clinical effects of portulaca oleracea seeds on dyslipidemia in obese adolescents: a tripleblinded randomized controlled trial. Med Arh. 2014;68:195–199.Google Scholar
  162. 162.
    Sabzghabaee AM, Khayam I, Kelishadi R, Ghannadi A, Soltani R, Badri S, Shirani S. Effect of ZizyphusJujuba fruits on dyslipidemia in obese adolescents: a Triple-masked randomized controlled clinical trial. Med Arh. 2013; 67:156–159.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jeganathan Manivannan
    • 1
    • 3
  • Thangarasu Silambarasan
    • 3
  • Janakiraman Shanthakumar
    • 3
  • Natarajan Suganya
    • 2
  • Shankar Kanchana
    • 3
  1. 1.Systems Biology and Medicine LabAU-KBC Research Centre, MIT campus, Anna UniversityChennaiIndia
  2. 2.AU-KBC Research Centre, Anna UniversityChennaiIndia
  3. 3.Department of Biochemistry and Biotechnology, Faculty of ScienceAnnamalai UniversityChidambaramIndia

Personalised recommendations