Advertisement

Maternal Long-chain Polyunsaturated Fatty Acids and Pregnancy Outcome

  • Amrita Khaire
  • Sadhana Joshi
Chapter

Abstract

The mother provides various vital nutrients to the growing fetus during pregnancy. Maternal nutrient levels and fatty acids are critical for normal fetal growth and development. All fatty acids provide energy, but structural and metabolic functions primarily require the long-chain polyunsaturated fatty acids (LCPUFA). The biologically most active LCPUFA are docosahexaenoic acid (22:6, omega-3), eicosapentaenoic acid (20:5, omega-3), and arachidonic acid (AA, 20:4 omega-6) which are synthesized from their essential fatty acid precursors, alpha-linolenic acid (18:3, omega-3), and linoleic acid (18:2, omega-6). LCPUFA and their eicosanoid metabolites such prostaglandins and prostacyclins play a vital role in determining the length of gestation, initiation of labor, and placental growth and development. Storage of LCPUFA in maternal fat depots during early pregnancy serves as a sole source of LCPUFA for the growing fetus as the fetus has a limited capacity to synthesize LCPUFA due to lack of desaturases. Therefore, the amount of LCPUFA transported from the mother to fetus depends on maternal LCPUFA intake, metabolism, and placental uptake/transport of fatty acids. Accretion of maternal LCPUFA during pregnancy may reduce the risk of pregnancy complications such as preterm birth, intrauterine growth restriction, gestational diabetes mellitus, and preeclampsia. Maternal DHA and AA status positively influence fetal growth and brain development and also reduce the risk of developing non-communicable diseases in the offspring in adult life. This chapter describes the role of maternal LCPUFA in reducing the risk of adverse pregnancy outcomes.

Keywords

DHA GDM IUGR Labor LCPUFA Omega-3 fatty acids Placenta Preeclampsia Pregnancy Preterm 

Abbreviations

AA

Arachidonic acid

ALA

Alpha-linolenic acid

DHA

Docosahexaenoic acid

GDM

Gestational diabetes mellitus

IUGR

Intrauterine growth restriction

LA

Linoleic acid

LCPUFA

Long-chain polyunsaturated fatty acids

PUFA

Polyunsaturated fatty acids

References

  1. 1.
    Morse NL. Benefits of docosahexaenoic acid, folic acid, vitamin D and iodine on foetal and infant brain development and function following maternal supplementation during pregnancy and lactation. Nutrients. 2012;4(7):799–840.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Allen LH. Multiple micronutrients in pregnancy and lactation: an overview. Am J Clin Nutr. 2005;81(5):1206s–12s.PubMedGoogle Scholar
  3. 3.
    Moore VM, Davies MJ. Diet during pregnancy, neonatal outcomes and later health. ReprodFertil Dev. 2005;17(3):341–8.Google Scholar
  4. 4.
    Odent M. Nutrition in pregnancy: keeping in mind the priorities. Pract Midwife. 2014;17(9):10–2.PubMedGoogle Scholar
  5. 5.
    Mistry HD, Williams PJ. The importance of antioxidant micronutrients in pregnancy. Oxid Med Cell Longev. 2011;2011:841749.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Cetin I, Alvino G, Cardellicchio M. Long chain fatty acids and dietary fats in fetal nutrition. J Physiol. 2009;587(Pt 14):3441–51.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Kwong WY, Wild AE, Roberts P, Willis AC, Fleming TP. Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development. 2000;127(19):4195–202.PubMedGoogle Scholar
  8. 8.
    Kontic-Vucinic O, Sulovic N, Radunovic N. Micronutrients in women’s reproductive health: II. Minerals and trace elements. Int J Fertil Womens Med. 2006;51(3):116–24.PubMedGoogle Scholar
  9. 9.
    Keen CL, Clegg MS, Hanna LA, Lanoue L, Rogers JM, Daston GP, et al. The plausibility of micronutrient deficiencies being a significant contributing factor to the occurrence of pregnancy complications. J Nutr. 2003;133(5 Suppl 2):1597s–605s.PubMedGoogle Scholar
  10. 10.
    Wu G, Imhoff-Kunsch B, Girard AW. Biological mechanisms for nutritional regulation of maternal health and fetal development. Paediatr Perinat Epidemiol. 2012;26(Suppl 1):4–26.PubMedCrossRefGoogle Scholar
  11. 11.
    Rush D. Nutrition and maternal mortality in the developing world. Am J Clin Nutr. 2000;72(1 Suppl):212s–40s.PubMedGoogle Scholar
  12. 12.
    Muthayya S. Maternal nutrition & low birth weight—what is really important? Indian J Med Res. 2009;130(5):600–8.PubMedGoogle Scholar
  13. 13.
    Chen JH, Martin-Gronert MS, Tarry-Adkins J, Ozanne SE. Maternal protein restriction affects postnatal growth and the expression of key proteins involved in lifespan regulation in mice. PLoS ONE. 2009;4(3):e4950.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Watkins AJ, Lucas ES, Wilkins A, Cagampang FR, Fleming TP. Maternal periconceptional and gestational low protein diet affects mouse offspring growth, cardiovascular and adipose phenotype at 1 year of age. PLoS One. 2011;6(12):e28745.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Rao KR, Padmavathi IJ, Raghunath M. Maternal micronutrient restriction programs the body adiposity, adipocyte function and lipid metabolism in offspring: a review. Rev Endocr Metab Disord. 2012;13(2):103–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Herrera E. Implications of dietary fatty acids during pregnancy on placental, fetal and postnatal development—a review. Placenta. 2002;23 Suppl A:S9–19.Google Scholar
  17. 17.
    Dutta-Roy AK. Transport mechanisms for long-chain polyunsaturated fatty acids in the human placenta. Am J Clin Nutr. 2000;71(1 Suppl):315s–22s.PubMedGoogle Scholar
  18. 18.
    Muskiet FAJ. Frontiers in neuroscience pathophysiology and evolutionary aspects of dietary fats and long-chain polyunsaturated fatty acids across the life cycle. In: Montmayeur JP, le Coutre J, editors. Fat detection: taste, texture, and post ingestive effects. Boca Raton (FL): CRC Press, Taylor& Francis Group, LLC; 2010.Google Scholar
  19. 19.
    Zhou H, Liu R. ER stress and hepatic lipid metabolism. Front Genet. 2014;5:112.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Rodriguez A, Sarda P, Nessmann C, Boulot P, Leger CL, Descomps B. Delta6- and delta5-desaturase activities in the human fetal liver: kinetic aspects. J Lipid Res. 1998;39(9):1825–32.PubMedGoogle Scholar
  21. 21.
    Vrablik TL, Watts JL. Emerging roles for specific fatty acids in developmental processes. Genes Dev. 2012;26(7):631–7.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Nakamura MT, Nara TY. Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu Rev Nutr. 2004;24:345–76.PubMedCrossRefGoogle Scholar
  23. 23.
    Slagsvold JE, Thorstensen K, Kvitland M, Erixon D, Knagenhjelm N, Mack M, et al. Fatty acid desaturase expression in human leucocytes correlates with plasma phospholipid fatty acid status. Scand J Clin Lab Invest. 2009;69(4):496–504.PubMedCrossRefGoogle Scholar
  24. 24.
    Chilton FH, Murphy RC, Wilson BA, Sergeant S, Ainsworth H, Seeds MC, et al. Diet-gene interactions and PUFA metabolism: a potential contributor to health disparities and human diseases. Nutrients. 2014;6(5):1993–2022.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Butte NF. Carbohydrate and lipid metabolism in pregnancy: normal compared with gestational diabetes mellitus. Am J Clin Nutr. 2000;71(5 Suppl):1256s-61s.Google Scholar
  26. 26.
    Herrera E, Amusquivar E, Lopez-Soldado I, Ortega H. Maternal lipid metabolism and placental lipid transfer. Horm Res. 2006;65 (Suppl) 3:59–64.Google Scholar
  27. 27.
    Herrera E, Ortega-Senovilla H. Maternal lipid metabolism during normal pregnancy and its implications to fetal development. Clinical Lipidology. 2000;5(6):899–911.CrossRefGoogle Scholar
  28. 28.
    Haggarty P. Fatty acid supply to the human fetus. Annu Rev Nutr. 2010;30:237–55.PubMedCrossRefGoogle Scholar
  29. 29.
    Lauritzen L, Carlson SE. Maternal fatty acid status during pregnancy and lactation and relation to newborn and infant status. Matern Child Nutr. 2011;7 (Suppl) 2:41–58.Google Scholar
  30. 30.
    Holman RT, Johnson SB, Ogburn PL. Deficiency of essential fatty acids and membrane fluidity during pregnancy and lactation. Proc Natl AcadSci USA. 1991;88(11):4835–9.CrossRefGoogle Scholar
  31. 31.
    Montgomery C, Speake BK, Cameron A, Sattar N, Weaver LT. Maternal docosahexaenoic acid supplementation and fetal accretion. Br J Nutr. 2003;90(1):135–45.PubMedCrossRefGoogle Scholar
  32. 32.
    Larque E, Gil-Sanchez A, Prieto-Sanchez MT, Koletzko B. Omega 3 fatty acids, gestation and pregnancy outcomes. Br J Nutr. 2012;107 Suppl 2:S77–84.Google Scholar
  33. 33.
    Matorras R, Lopez De Larrucea A, Sanjurjo P, Ignacio Ruiz J, Echevarria Y, Nieto A, et al. Increased tissue concentrations of arachidonic acid in umbilical artery and placenta in fetal growth retardation. Acta Obstet Gynecol Scand. 2001;80(9):807–12.PubMedCrossRefGoogle Scholar
  34. 34.
    Al MD, van Houwelingen AC, Kester AD, Hasaart TH, de Jong AE, Hornstra G. Maternal essential fatty acid patterns during normal pregnancy and their relationship to the neonatal essential fatty acid status. Br J Nutr. 1995;74(1):55–68.PubMedCrossRefGoogle Scholar
  35. 35.
    Haggarty P. Placental regulation of fatty acid delivery and its effect on fetal growth–a review. Placenta. 2002;23 Suppl A:S28–38.Google Scholar
  36. 36.
    Haggarty P. Effect of placental function on fatty acid requirements during pregnancy. Eur J Clin Nutr. 2004;58(12):1559–70.PubMedCrossRefGoogle Scholar
  37. 37.
    Amusquivar E, Herrera E. Influence of changes in dietary fatty acids during pregnancy on placental and fetal fatty acid profile in the rat. Biol Neonate. 2003;83(2):136–45.PubMedCrossRefGoogle Scholar
  38. 38.
    Elias SL, Innis SM. Infant plasma trans, n-6, and n-3 fatty acids and conjugated linoleic acids are related to maternal plasma fatty acids, length of gestation, and birth weight and length. Am J Clin Nutr. 2001;73(4):807–14.PubMedGoogle Scholar
  39. 39.
    Kilari AS, Mehendale SS, Dangat KD, Yadav HR, Kulakarni AV, Dhobale MV, et al. Long chain polyunsaturated fatty acids in mothers and term babies. J Perinat Med. 2009;37(5):513–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Imhoff-Kunsch B, Briggs V, Goldenberg T, Ramakrishnan U. Effect of n-3 long-chain polyunsaturated fatty acid intake during pregnancy on maternal, infant, and child health outcomes: a systematic review. Paediatr Perinat Epidemiol. 2012;26 Suppl 1:91–107.Google Scholar
  41. 41.
    Jones ML, Mark PJ, Waddell BJ. Maternal dietary omega-3 fatty acids and placental function. Reproduction. 2014;147(5):R143–52.PubMedCrossRefGoogle Scholar
  42. 42.
    Olsen SF, Hansen HS, Sorensen TI, Jensen B, Secher NJ, Sommer S, et al. Intake of marine fat, rich in (n-3)-polyunsaturated fatty acids, may increase birthweight by prolonging gestation. Lancet. 1986;2(8503):367–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Kota SK, Gayatri K, Jammula S, Kota SK, Krishna SV, Meher LK, et al. Endocrinology of parturition. Indian J Endocrinol Metab. 2013;17(1):50–9.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Olsen SF, Joensen HD. High liveborn birth weights in the Faroes: a comparison between birth weights in the Faroes and in Denmark. J Epidemiol Community Health. 1985;39(1):27–32.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Allen KG, Harris MA. The role of n-3 fatty acids in gestation and parturition. Exp Biol Med (Maywood). 2001;226(6):498–506.Google Scholar
  46. 46.
    Greenberg JA, Bell SJ, Ausdal WV. Omega-3 fatty acid supplementation during pregnancy. Rev Obstet Gynecol. 2008;1(4):162–9.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Facchinetti F, Fazzio M, Venturini P. Polyunsaturated fatty acids and risk of preterm delivery. Eur Rev Med Pharmacol Sci. 2005;9(1):41–8.PubMedGoogle Scholar
  48. 48.
    Roman AS, Schreher J, Mackenzie AP, Nathanielsz PW. Omega-3 fatty acids and decidual cell prostaglandin production in response to the inflammatory cytokine IL-1beta. Am J Obstet Gynecol. 2006;195(6):1693–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Yoshida M, Sagawa N, Itoh H, Yura S, Takemura M, Wada Y, et al. Prostaglandin F(2alpha), cytokines and cyclic mechanical stretch augment matrix metalloproteinase-1 secretion from cultured human uterine cervical fibroblast cells. Mol Hum Reprod. 2002;8(7):681–7Google Scholar
  50. 50.
    Karim SM. The role of prostaglandins in human parturition. Proc R Soc Med. 1971;64(1):10–2.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Thomas J, Fairclough A, Kavanagh J, Kelly AJ. Vaginal prostaglandin (PGE2 and PGF2a) for induction of labour at term. Cochrane Database Syst Rev. 2014;6:Cd003101.PubMedGoogle Scholar
  52. 52.
    Kelly AJ, Malik S, Smith L, Kavanagh J, Thomas J. Vaginal prostaglandin (PGE2 and PGF2a) for induction of labour at term. Cochrane Database Syst Rev. 2009;4:Cd003101.PubMedGoogle Scholar
  53. 53.
    Olson DM, Mijovic JE, Sadowsky DW. Control of human parturition. Semin Perinatol. 1995;19(1):52–63Google Scholar
  54. 54.
    Coletta JM, Bell SJ, Roman AS. Omega-3 fatty acids and pregnancy. Rev Obstet Gynecol. 2010;3(4):163–71.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Fereidooni B, Jenabi E. The use of omega 3 on pregnancy outcomes: a single-center study. J Pak Med Assoc. 2014;64(12):1363–5.PubMedGoogle Scholar
  56. 56.
    Carlson SE, Colombo J, Gajewski BJ, Gustafson KM, Mundy D, Yeast J, et al. DHA supplementation and pregnancy outcomes. Am J Clin Nutr. 2013;97(4):808–15.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Quinlivan JA, Pakmehr S. Fish oils as a population based strategy to reduce early preterm birth. Reprod Syst Sex Disord. 2013;2:116.CrossRefGoogle Scholar
  58. 58.
    Makrides M, Gibson RA, McPhee AJ, Yelland L, Quinlivan J, Ryan P, et al. Effect of DHA supplementation during pregnancy on maternal depression and neurodevelopment of young children: a randomized controlled trial. JAMA. 2010;304(15):1675–83.PubMedCrossRefGoogle Scholar
  59. 59.
    Ramakrishnan U, Stein AD, Parra-Cabrera S, Wang M, Imhoff-Kunsch B, Juarez-Marquez S, et al. Effects of docosahexaenoic acid supplementation during pregnancy on gestational age and size at birth: randomized, double-blind, placebo-controlled trial in Mexico. Food Nutr Bull. 2010;31(2 Suppl):S108–16.PubMedCrossRefGoogle Scholar
  60. 60.
    Gabory A, Roseboom TJ, Moore T, Moore LG, Junien C. Placental contribution to the origins of sexual dimorphism in health and diseases: sex chromosomes and epigenetics. Biol Sex Differ. 2013;4(1):5.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Reynolds LP, Redmer DA. Angiogenesis in the placenta. Biol Reprod. 2001;64(4):1033–40.PubMedCrossRefGoogle Scholar
  62. 62.
    Carmeliet P. Angiogenesis in life, disease and medicine. Nature. 2005;438(7070):932–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Demir R, Yaba A, Huppertz B. Vasculogenesis and angiogenesis in the endometrium during menstrual cycle and implantation. Acta Histochem. 2010;112(3):203–14.PubMedCrossRefGoogle Scholar
  64. 64.
    Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9(6):653–60.PubMedCrossRefGoogle Scholar
  65. 65.
    Pepper MS. Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol. 2001;21(7):1104–17.PubMedCrossRefGoogle Scholar
  66. 66.
    Johnsen GM, Basak S, Weedon-Fekjaer MS, Staff AC, Duttaroy AK. Docosahexaenoic acid stimulates tube formation in first trimester trophoblast cells, HTR8/SVneo. Placenta. 2011;32(9):626–32.PubMedCrossRefGoogle Scholar
  67. 67.
    Basak S, Duttaroy AK. Effects of fatty acids on angiogenic activity in the placental extravillious trophoblast cells. Prostaglandins Leukot Essent Fatty Acids. 2013;88(2):155–62.PubMedCrossRefGoogle Scholar
  68. 68.
    Sundrani DP, Reddy US, Joshi AA, Mehendale SS, Chavan-Gautam PM, Hardikar AA, et al. Differential placental methylation and expression of VEGF, FLT-1 and KDR genes in human term and preterm preeclampsia. Clin Epigenetics. 2013;5(1):6.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Hanebutt FL, Demmelmair H, Schiessl B, Larque E, Koletzko B. Long-chain polyunsaturated fatty acid (LC-PUFA) transfer across the placenta. Clin Nutr. 2008;27(5):685–93.PubMedCrossRefGoogle Scholar
  70. 70.
    Duttaroy AK. Fetal growth and development: roles of fatty acid transport proteins and nuclear transcription factors in human placenta. Indian J Exp Biol. 2004;42(8):747–57.PubMedGoogle Scholar
  71. 71.
    van der Vusse GJ, van Bilsen M, Glatz JF. Cardiac fatty acid uptake and transport in health and disease. Cardiovasc Res. 2000;45(2):279–93.PubMedCrossRefGoogle Scholar
  72. 72.
    Stahl A, Gimeno RE, Tartaglia LA, Lodish HF. Fatty acid transport proteins: a current view of a growing family. Trends Endocrinol Metab. 2001;12(6):266–73.PubMedCrossRefGoogle Scholar
  73. 73.
    Gil-Sanchez A, Koletzko B, Larque E. Current understanding of placental fatty acid transport. Curr Opin Clin Nutr Metab Care. 2012;15(3):265–72.PubMedCrossRefGoogle Scholar
  74. 74.
    Larque E, Krauss-Etschmann S, Campoy C, Hartl D, Linde J, Klingler M, et al. Docosahexaenoic acid supply in pregnancy affects placental expression of fatty acid transport proteins. Am J Clin Nutr. 2006;84(4):853–61.PubMedGoogle Scholar
  75. 75.
    Lager S, Powell TL. Regulation of nutrient transport across the placenta. J Pregnancy. 2012;2012:179827.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Smits LJ, Elzenga HM, Gemke RJ, Hornstra G, van Eijsden M. The association between interpregnancy interval and birth weight: what is the role of maternal polyunsaturated fatty acid status? BMC Pregnancy Childbirth. 2013;13:23.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Reece MS, McGregor JA, Allen KG, Harris MA. Maternal and perinatal long-chain fatty acids: possible roles in preterm birth. Am J Obstet Gynecol. 1997;176(4):907–14.PubMedCrossRefGoogle Scholar
  78. 78.
    Joshi SR, Mehendale SS, Dangat KD, Kilari AS, Yadav HR, Taralekar VS. High maternal plasma antioxidant concentrations associated with preterm delivery. Ann Nutr Metab. 2008;53(3–4):276–82.PubMedGoogle Scholar
  79. 79.
    Dhobale MV, Wadhwani N, Mehendale SS, Pisal HR, Joshi SR. Reduced levels of placental long chain polyunsaturated fatty acids in preterm deliveries. Prostaglandins Leukot Essent Fatty Acids. 2011;85(3–4):149–53.PubMedCrossRefGoogle Scholar
  80. 80.
    Araya J, Rojas M, Fernandez P, Mateluna A. Essential fatty acid content of maternal erythrocyte phospholipids. A study in preterm and full-term human newborns. Rev Med Chil. 1998;126(4):391–6.PubMedGoogle Scholar
  81. 81.
    Pontes PV, Torres AG, Trugo NM, Fonseca VM, Sichieri R. n-6 and n-3 long-chain polyunsaturated fatty acids in the erythrocyte membrane of Brazilian preterm and term neonates and their mothers at delivery. Prostaglandins Leukot Essent Fatty Acids. 2006;74(2):117–23.PubMedCrossRefGoogle Scholar
  82. 82.
    Al-Tamer YY, Mahmood AA. Fatty-acid composition of the colostrum and serum of fullterm and preterm delivering Iraqi mothers. Eur J Clin Nutr. 2004;58(8):1119–24.PubMedCrossRefGoogle Scholar
  83. 83.
    Koletzko B, Cetin I, Brenna JT. Dietary fat intakes for pregnant and lactating women. Br J Nutr. 2007;98(5):873–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Olsen SF, Secher NJ, Tabor A, Weber T, Walker JJ, Gluud C. Randomised clinical trials of fish oil supplementation in high risk pregnancies. Fish Oil Trials In Pregnancy (FOTIP) Team. BJOG. 2000;107(3):382–95.PubMedCrossRefGoogle Scholar
  85. 85.
    Baschat AA. Pathophysiology of fetal growth restriction: implications for diagnosis and surveillance. Obstet Gynecol Surv. 2004;59(8):617–27.PubMedCrossRefGoogle Scholar
  86. 86.
    Cetin I, Foidart JM, Miozzo M, Raun T, Jansson T, Tsatsaris V, et al. Fetal growth restriction: a workshop report. Placenta. 2004;25(8–9):753–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Vilbergsson G, Wennergren M, Samsioe G, Percy P, Percy A, Mansson JE, et al. Essential fatty acid status is altered in pregnancies complicated by intrauterine growth retardation. World Rev Nutr Diet. 1994;76:105–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Cetin I, Giovannini N, Alvino G, Agostoni C, Riva E, Giovannini M, et al. Intrauterine growth restriction is associated with changes in polyunsaturated fatty acid fetal-maternal relationships. Pediatr Res. 2002;52(5):750–5.PubMedCrossRefGoogle Scholar
  89. 89.
    Uauy R, Mena P, Wegher B, Nieto S, Salem N Jr. Long chain polyunsaturated fatty acid formation in neonates: effect of gestational age and intrauterine growth. Pediatr Res. 2000;47(1):127–35.PubMedCrossRefGoogle Scholar
  90. 90.
    Sattar N, Greer IA, Galloway PJ, Packard CJ, Shepherd J, Kelly T, et al. Lipid and lipoprotein concentrations in pregnancies complicated by intrauterine growth restriction. J ClinEndocrinol Metab. 1999;84(1):128–30.Google Scholar
  91. 91.
    Sibley CP, Turner MA, Cetin I, Ayuk P, Boyd CA, D’Souza SW, et al. Placental phenotypes of intrauterine growth. Pediatr Res. 2005;58(5):827–32.PubMedCrossRefGoogle Scholar
  92. 92.
    Magnusson AL, Waterman IJ, Wennergren M, Jansson T, Powell TL. Triglyceride hydrolase activities and expression of fatty acid binding proteins in the human placenta in pregnancies complicated by intrauterine growth restriction and diabetes. J Clin Endocrinol Metab. 2004;89(9):4607–14.PubMedCrossRefGoogle Scholar
  93. 93.
    Powell TL, Jansson T, Illsley NP, Wennergren M, Korotkova M, Strandvik B. Composition and permeability of syncytiotrophoblast plasma membranes in pregnancies complicated by intrauterine growth restriction. Biochim Biophys Acta. 1999;1420(1–2):86–94.PubMedCrossRefGoogle Scholar
  94. 94.
    Buchanan TA, Xiang A, Kjos SL, Watanabe R. What is gestational diabetes? Diabetes Care. 2007;30 Suppl 2:S105–11.Google Scholar
  95. 95.
    Kalra P, Kachhwaha CP, Singh HV. Prevalence of gestational diabetes mellitus and its outcome in western Rajasthan. Indian J Endocrinol Metab. 2013;17(4):677–80.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    O’Sullivan JB. Diabetes mellitus after GDM. Diabetes. 1991;40 Suppl 2:131–5.Google Scholar
  97. 97.
    Bo S, Menato G, Lezo A, Signorile A, Bardelli C, De Michieli F, et al. Dietary fat and gestational hyperglycaemia. Diabetologia. 2001;44(8):972–8.PubMedCrossRefGoogle Scholar
  98. 98.
    Radesky JS, Oken E, Rifas-Shiman SL, Kleinman KP, Rich-Edwards JW, Gillman MW. Diet during early pregnancy and development of gestational diabetes. Paediatr Perinat Epidemiol. 2008;22(1):47–59.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Wijendran V, Bendel RB, Couch SC, Philipson EH, Thomsen K, Zhang X, et al. Maternal plasma phospholipid polyunsaturated fatty acids in pregnancy with and without gestational diabetes mellitus: relations with maternal factors. Am J Clin Nutr. 1999;70(1):53–61.PubMedGoogle Scholar
  100. 100.
    Herrera E, Ortega-Senovilla H. Disturbances in lipid metabolism in diabetic pregnancy - Are these the cause of the problem? Best Pract Res Clin Endocrinol Metab. 2010;24(4):515–25.PubMedCrossRefGoogle Scholar
  101. 101.
    Osmond DT, Nolan CJ, King RG, Brennecke SP, Gude NM. Effects of gestational diabetes on human placental glucose uptake, transfer, and utilisation. Diabetologia. 2000;43(5):576–82.PubMedCrossRefGoogle Scholar
  102. 102.
    Thomas BA, Ghebremeskel K, Lowy C, Offley-Shore B, Crawford MA. Plasma fatty acids of neonates born to mothers with and without gestational diabetes. Prostaglandins Leukot Essent Fatty Acids. 2005;72(5):335–41.PubMedCrossRefGoogle Scholar
  103. 103.
    Bitsanis D, Ghebremeskel K, Moodley T, Crawford MA, Djahanbakhch O. Gestational diabetes mellitus enhances arachidonic and docosahexaenoic acids in placental phospholipids. Lipids. 2006;41(4):341–6.PubMedCrossRefGoogle Scholar
  104. 104.
    Dube E, Gravel A, Martin C, Desparois G, Moussa I, Ethier-Chiasson M, et al. Modulation of fatty acid transport and metabolism by maternal obesity in the human full-term placenta. Biol Reprod. 2012;87(1):1–14.CrossRefGoogle Scholar
  105. 105.
    Symonds ME, Pearce S, Bispham J, Gardner DS, Stephenson T. Timing of nutrient restriction and programming of fetal adipose tissue development. Proc Nutr Soc. 2004;63(3):397–403.PubMedCrossRefGoogle Scholar
  106. 106.
    Garcia Carrapato MR. The offspring of gestational diabetes. J Perinat Med. 2003;31(1):5–11.PubMedGoogle Scholar
  107. 107.
    Jamilian M, Samimi M, Kolahdooz F, Khalaji F, Razavi M, Asemi Z. Omega-3 fatty acid supplementation affects pregnancy outcomes in gestational diabetes: a randomized, double-blind, placebo-controlled trial. J Matern Fetal Neonatal Med. 2015;1–7.Google Scholar
  108. 108.
    Alvino G, Cozzi V, Radaelli T, Ortega H, Herrera E, Cetin I. Maternal and fetal fatty acid profile in normal and intrauterine growth restriction pregnancies with and without preeclampsia. Pediatr Res. 2008;64(6):615–20.PubMedCrossRefGoogle Scholar
  109. 109.
    Mahomed K, Williams MA, King IB, Mudzamiri S, Woelk GB. Erythrocyte omega-3, omega-6 and trans fatty acids in relation to risk of preeclampsia among women delivering at Harare Maternity Hospital, Zimbabwe. Physiol Res. 2007;56(1):37–50.PubMedGoogle Scholar
  110. 110.
    Qiu C, Sanchez SE, Larrabure G, David R, Bralley JA, Williams MA. Erythrocyte omega-3 and omega-6 polyunsaturated fatty acids and preeclampsia risk in Peruvian women. Arch Gynecol Obstet. 2006;274(2):97–103.PubMedCrossRefGoogle Scholar
  111. 111.
    Williams MA, Zingheim RW, King IB, Zebelman AM. Omega-3 fatty acids in maternal erythrocytes and risk of preeclampsia. Epidemiology. 1995;6(3):232–7.PubMedCrossRefGoogle Scholar
  112. 112.
    Lim WY, Chong M, Calder PC, Kwek K, Chong YS, Gluckman PD, et al. Relations of plasma polyunsaturated fatty acids with blood pressures during the 26th and 28th week of gestation in women of Chinese, Malay, and Indian ethnicity. Medicine (Baltimore). 2015;94(9):e571.CrossRefGoogle Scholar
  113. 113.
    Clausen T, Slott M, Solvoll K, Drevon CA, Vollset SE, Henriksen T. High intake of energy, sucrose, and polyunsaturated fatty acids is associated with increased risk of preeclampsia. Am J Obstet Gynecol. 2001;185(2):451–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Mackay VA, Huda SS, Stewart FM, Tham K, McKenna LA, Martin I, et al. Preeclampsia is associated with compromised maternal synthesis of long-chain polyunsaturated fatty acids, leading to offspring deficiency. Hypertension. 2012;60(4):1078–85.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Bakheit KH, Ghebremeskel K, Pol K, Elbashir MI, Adam I. Erythrocyte omega-3 and omega-6 fatty acids profile in Sudanese women with pre-eclampsia. J Obstet Gynaecol. 2010;30(2):151–4.PubMedCrossRefGoogle Scholar
  116. 116.
    Kulkarni A, Chavan-Gautam P, Mehendale S, Yadav H, Joshi S. Global DNA methylation patterns in placenta and its association with maternal hypertension in pre-eclampsia. DNA Cell Biol. 2011;30(2):79–84.PubMedCrossRefGoogle Scholar
  117. 117.
    Rakheja D, Bennett MJ, Rogers BB. Long-chain L-3-hydroxyacyl-coenzyme a dehydrogenase deficiency: a molecular and biochemical review. Lab Invest. 2002;82(7):815–24.PubMedCrossRefGoogle Scholar
  118. 118.
    Wadhwani N, Patil V, Pisal H, Joshi A, Mehendale S, Gupte S, et al. Altered maternal proportions of long chain polyunsaturated fatty acids and their transport leads to disturbed fetal stores in preeclampsia. Prostaglandins Leukot Essent Fatty Acids. 2014;91(1–2):21–30.PubMedCrossRefGoogle Scholar
  119. 119.
    Herrera E. Lipid metabolism in pregnancy and its consequences in the fetus and newborn. Endocrine. 2002;19(1):43–55.PubMedCrossRefGoogle Scholar
  120. 120.
    Clandinin MT, Chappell JE, Leong S, Heim T, Swyer PR, Chance GW. Intrauterine fatty acid accretion rates in human brain: implications for fatty acid requirements. Early Hum Dev. 1980;4(2):121–9.PubMedCrossRefGoogle Scholar
  121. 121.
    Clandinin MT, Chappell JE, Heim T, Swyer PR, Chance GW. Fatty acid utilization in perinatal de novo synthesis of tissues. Early Hum Dev. 1981;5(4):355–66.PubMedCrossRefGoogle Scholar
  122. 122.
    De Giuseppe R, Roggi C, Cena H. n-3 LC-PUFA supplementation: effects on infant and maternal outcomes. Eur J Nutr. 2014;53(5):1147–54.PubMedCrossRefGoogle Scholar
  123. 123.
    Uhl O, Demmelmair H, Segura MT, Florido J, Rueda R, Campoy C, et al. Effects of obesity and gestational diabetes mellitus on placental phospholipids. Diabetes Res Clin Pract. 2015;109:364–71.Google Scholar
  124. 124.
    Carlsen K, Pedersen L, Bonnelykke K, Stark KD, Lauritzen L, Bisgaard H. Association between whole-blood polyunsaturated fatty acids in pregnant women and early fetal weight. Eur J Clin Nutr. 2013;67(9):978–83.PubMedCrossRefGoogle Scholar
  125. 125.
    Grandjean P, Bjerve KS, Weihe P, Steuerwald U. Birthweight in a fishing community: significance of essential fatty acids and marine food contaminants. Int J Epidemiol. 2001;30(6):1272–8.PubMedCrossRefGoogle Scholar
  126. 126.
    Simpson JL, Bailey LB, Pietrzik K, Shane B, Holzgreve W. Micronutrients and women of reproductive potential required dietary intake and consequences of dietary deficiency or excess: Part II–vitamin D, vitamin A, iron, zinc, iodine, essential fatty acids. J Matern Fetal Neonatal Med. 2011;24(1):1–24.PubMedCrossRefGoogle Scholar
  127. 127.
    Martinez M. Abnormal profiles of polyunsaturated fatty acids in the brain, liver, kidney and retina of patients with peroxisomal disorders. Brain Res. 1992;583(1–2):171–82.PubMedCrossRefGoogle Scholar
  128. 128.
    Hussain G, Schmitt F, Loeffler JP, Gonzalez de Aguilar JL. Fatting the brain: a brief of recent research. Front Cell Neurosci. 2013;7:144.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Chung WL, Chen JJ, Su HM. Fish oil supplementation of control and (n-3) fatty acid-deficient male rats enhances reference and working memory performance and increases brain regional docosahexaenoic acid levels. J Nutr. 2008;138(6):1165–71.PubMedGoogle Scholar
  130. 130.
    Helland IB, Smith L, Saarem K, Saugstad OD, Drevon CA. Maternal supplementation with very-long-chain n-3 fatty acids during pregnancy and lactation augments children’s IQ at 4 years of age. Pediatrics. 2003;111(1):e39–44.PubMedCrossRefGoogle Scholar
  131. 131.
    Jensen CL, Voigt RG, Llorente AM, Peters SU, Prager TC, Zou YL, et al. Effects of early maternal docosahexaenoic acid intake on neuropsychological status and visual acuity at five years of age of breast-fed term infants. J Pediatr. 2010;157(6):900–5.PubMedCrossRefGoogle Scholar
  132. 132.
    Neuringer M. Cerebral cortex docosahexaenoic acid is lower in formula-fed than in breast-fed infants. Nutr Rev. 1993;51(8):238–41.PubMedCrossRefGoogle Scholar
  133. 133.
    Jamieson EC, Farquharson J, Logan RW, Howatson AG, Patrick WJ, Weaver LT, et al. Infant cerebellar gray and white matter fatty acids in relation to age and diet. Lipids. 1999;34(10):1065–71.PubMedCrossRefGoogle Scholar
  134. 134.
    Haag M. Essential fatty acids and the brain. Can J Psychiatry. 2003;48(3):195–203.PubMedGoogle Scholar
  135. 135.
    Agostoni C. Docosahexaenoic acid (DHA): from the maternal-foetal dyad to the complementary feeding period. Early Hum Dev. 2010;86 Suppl 1:3–6.Google Scholar
  136. 136.
    Rombaldi Bernardi J, de Souza Escobar R, Ferreira CF, Silveira PP. Fetal and neonatal levels of omega-3: effects on neurodevelopment, nutrition, and growth. Sci World J. 2012;2012:202473.Google Scholar
  137. 137.
    Smithers LG, Gibson RA, McPhee A, Makrides M. Higher dose of docosahexaenoic acid in the neonatal period improves visual acuity of preterm infants: results of a randomized controlled trial. Am J Clin Nutr. 2008;88(4):1049–56.PubMedGoogle Scholar
  138. 138.
    Gale CR, Robinson SM, Godfrey KM, Law CM, Schlotz W, O’Callaghan FJ. Oily fish intake during pregnancy–association with lower hyperactivity but not with higher full-scale IQ in offspring. J Child Psychol Psychiatry. 2008;49(10):1061–8.PubMedCrossRefGoogle Scholar
  139. 139.
    Hashimoto M, Hossain S. Neuroprotective and ameliorative actions of polyunsaturated fatty acids against neuronal diseases: beneficial effect of docosahexaenoic acid on cognitive decline in Alzheimer’s Disease. J Pharmacol Sci. 2011;116(2):150–62.PubMedCrossRefGoogle Scholar
  140. 140.
    Herrera E, Ortega-Senovilla H. Lipid metabolism during pregnancy and its implications for fetal growth. Curr Pharm Biotechnol. 2014;15(1):24–31.PubMedCrossRefGoogle Scholar
  141. 141.
    Kubo A, Corley DA, Jensen CD, Kaur R. Dietary factors and the risks of oesophageal adenocarcinoma and Barrett’s oesophagus. Nutr Res Rev. 2010;23(2):230–46.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Innis SM. Perinatal biochemistry and physiology of long-chain polyunsaturated fatty acids. The Journal of Pediatrics. 2003;143(4):1–8.CrossRefGoogle Scholar
  143. 143.
    Innis SM. Fatty acids and early human development. Early Hum Dev. 2007;83(12):761–6.PubMedCrossRefGoogle Scholar
  144. 144.
    Helland IB, Saugstad OD, Smith L, Saarem K, Solvoll K, Ganes T, et al. Similar effects on infants of n-3 and n-6 fatty acids supplementation to pregnant and lactating women. Pediatrics. 2001;108(5):e82-e.Google Scholar
  145. 145.
    Innis SM. Metabolic programming of long-term outcomes due to fatty acid nutrition in early life. Matern Child Nutr. 2011;2(7Suppl):112–23.CrossRefGoogle Scholar
  146. 146.
    Bernardi JR, Ferreira CF, Senter G, Krolow R, de Aguiar BW, Portella AK, et al. Early life stress interacts with the diet deficiency of omega-3 fatty acids during the life course increasing the metabolic vulnerability in adult rats. PLoS ONE. 2013;8(4):e62031.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Moon RJ, Harvey NC, Robinson SM, Ntani G, Davies JH, Inskip HM, et al. Maternal plasma polyunsaturated fatty acid status in late pregnancy is associated with offspring body composition in childhood. J Clin Endocrinol Metab. 2013;98(1):299–307.PubMedCrossRefGoogle Scholar
  148. 148.
    Armitage JA, Khan IY, Taylor PD, Nathanielsz PW, Poston L. Developmental programming of the metabolic syndrome by maternal nutritional imbalance: how strong is the evidence from experimental models in mammals? J Physiol. 2004;561(Pt 2):355–77.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Donahue SM, Rifas-Shiman SL, Gold DR, Jouni ZE, Gillman MW, Oken E. Prenatal fatty acid status and child adiposity at age 3 y: results from a US pregnancy cohort. Am J Clin Nutr. 2011;93(4):780–8.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Baur LA, O’Connor J, Pan DA, Storlien LH. Relationships between maternal risk of insulin resistance and the child’s muscle membrane fatty acid composition. Diabetes. 1999;48(1):112–6.PubMedCrossRefGoogle Scholar
  151. 151.
    Das UN. A perinatal strategy to prevent coronary heart disease nutrition. 2003;19(11-12):1022–7.Google Scholar
  152. 152.
    Hussain A, Nookaew I, Khoomrung S, Andersson L, Larsson I, Hulthen L, et al. A maternal diet of fatty fish reduces body fat of offspring compared with a maternal diet of beef and a post-weaning diet of fish improves insulin sensitivity and lipid profile in adult C57BL/6 male mice. Acta Physiol (Oxf). 2013;209(3):220–34.Google Scholar
  153. 153.
    Bremer AA, Stanhope KL, Graham JL, Cummings BP, Ampah SB, Saville BR, et al. Fish oil supplementation ameliorates fructose-induced hypertriglyceridemia and insulin resistance in adult male rhesus macaques. J Nutr. 2014;144(1):5–11.PubMedCrossRefGoogle Scholar
  154. 154.
    Kasbi-Chadli F, Boquien CY, Simard G, Ulmann L, Mimouni V, Leray V, et al. Maternal supplementation with n-3 long chain polyunsaturated fatty acids during perinatal period alleviates the metabolic syndrome disturbances in adult hamster pups fed a high-fat diet after weaning. J Nutr Biochem. 2014;25(7):726–33.PubMedCrossRefGoogle Scholar
  155. 155.
    Khaire A, Rathod R, Kemse N, Kale A, Joshi S. Supplementation with omega-3 fatty acids during gestation and lactation to a vitamin B12—deficient or—supplemented diet improves pregnancy outcome and metabolic variables in Wistar rats. Reprod Fertil Dev. 2015a;27(2):341–50.Google Scholar
  156. 156.
    Khaire A, Rathod R, Kale A, Joshi S. Vitamin B and omega-3 fatty acids together regulate lipid metabolism in Wistar rats. Prostaglandins Leukot Essent Fatty Acids. 2015b.Google Scholar
  157. 157.
    Gong Q, Zhang X, Xu C. Effect of pregnancy rats supplemented with docosahexaenoic acid on carnitine palmitoyl transferase-I gene expression in offspring. Wei Sheng Yan Jiu. 2009;38(6):685–791.PubMedGoogle Scholar
  158. 158.
    WHO. Diet, nutrition and the prevention of chronic diseases report of a joint WHO/FAO Expert Consultation, WHO Technical Report Series No. 916, WHO, Geneva.Google Scholar
  159. 159.
    Koletzko B, Boey CC, Campoy C, Carlson SE, Chang N, Guillermo-Tuazon MA, et al. Current information and Asian perspectives on long-chain polyunsaturated fatty acids in pregnancy, lactation, and infancy: systematic review and practice recommendations from an early nutrition academy workshop. Ann Nutr Metab. 2014;65(1):49–80.PubMedCrossRefGoogle Scholar
  160. 160.
    Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. Washington, D. C.: National Academies Press; 2002Google Scholar
  161. 161.
    Goyal USB, Verma S. Contribution of various foods to fat and fatty acids intake among urban and semi-urban women of Punjab. J Hum Ecol. 2005;18:217–20.Google Scholar
  162. 162.
    Indian Council of Medical Research (ICMR). Nutrient requirements and recommended dietary allowances for Indians. A report of the expert group of the ICMR, National Institute of Nutrition, Hyderabad, India. 2009.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Nutritional Medicine, Interactive Research School for Health AffairsBharati Vidyapeeth Deemed UniversityPuneIndia

Personalised recommendations