Advertisement

Linoleic Acid and Alpha-Linolenic Acid Have Central Roles in Brain Energy Substrate Provision, Endogenous Lipid Production, Immune and Repair Function, via Peroxisomal Beta-Oxidation-Related Pathways?

  • Robert Andrew Brown

Abstract

Current metabolic considerations of “fuel” sources for brain energy, and substrate creation, generally focus on glucose and externally derived ketones. However, the healthy existence of Inuit, with a common Inuit CPT1A carnitine polymorphism that substantially inhibits mitochondrial uptake of long fats, who apparently were not in ketosis, with little access to glucose, suggests humans can fuel their brains largely from peroxisomally produced medium-chain fats (MCFs), ACoA and derivatives. The health, and ability to build and run a brain, of neonates nourished with breast milk, which is high in lipids and low in carbohydrates, whom are very rarely in significant measured ketosis, adds to evidence the brain can metabolise fats as a major energy source. Whilst brain lipid research primarily focuses on arachidonic (AA) and docosahexaenoic acids (DHA); alpha-linolenic (ALA) and linolenic acids (LA), as preferred peroxisomal beta-oxidation substrates, and to lesser extents palmitic (PA) and oleic acids (OA), likely have underappreciated but fundamental roles in the brain as the primary substrates for peroxisomal beta-oxidation, so indirect sources of MCFs, ACoA and downstream-derivatives, mitochondrial “fuels” for ATP production. Alternatively ACoA is a substrate for “endogenous” lipid manufacture within the BBB, and co-peroxisomal-product peroxide acts as a signalling agent. LA and ALA cross the blood-brain-barrier (BBB), but are not significantly present in brain structural-tissue, likely being largely metabolised through peroxisomal pathways in astrocytes to substrate or energy. LA and ALA also have wider brain roles, including the following: LA-/ALA-oxidised products in injured brain tissue moderate immune function; as preferred substrates for LOX12/15; LA oxylipins the HODEs are the primary endogenous activators of PPAR gamma related peroxisomal activity; PPAR gamma and peroxide promote iNOS activity; iNOS-based NO production inhibits catalase assisting microglial oxidative function, in excess causing oxidative damage; further PPAR gamma moderates microglial function. LA oxylipin 13HODE overactivation of the PPAR gamma-related peroxisomal pathways results in imbalances in brain lipid composition; loss of LA; increased denovo lipid and cholesterol production; increased desaturation by SCD1 so increased mono- and polyunsaturated Omega-7 and Omega-9 fats including mead acid; intracellular lipid deposition including of cholesterol, increased oxidative stress; cardiolipin lipid species changes and imbalances; and mitochondrial dysfunction; which changes link to diseases of cognitive impairment, including depression and Alzheimer’s. Further changes in the LA, OA and PA desaturase products, so the lipid-membrane content including of cardiolipin, will change mitochondrial energetics. Exposure to LA oxylipins in the absence of sufficient lipid protective antioxidant capacity, makes mitochondria more susceptible to damage, including reduced cytochrome C-related ATP production, and results in release from cardiolipin of damaging LA-based oxylipins, including HODEs and 4HNE. Conversely ALA has surprising beneficial effects on brain function. A single “subchronic” injection of ALA into the bloodstream before induction of a stroke in mice reduced post-infarct ischaemic damage. Multiple pre-stroke ALA treatments improved survival by a factor of 3 at ten days, increased neurogenesis, enhanced brain plasticity, and were significantly antidepressant. The first casualties of nutrient-depleted pre-oxidised Omega-3:6 imbalanced diets are likely loss of IQ, abstract thought and crucially empathy, and arguably accompanied by increased aggression and territoriality. What is the future for individuals, nations and more widely humanity, if increasing numbers of humans are more aggressive and territorial, have falling IQs and depleted capacity for abstract thought and empathy? ‘The greatness of humanity is not being human but humane’ Gandhi.

Keywords

ALA alpha-linolenic LA linoleic Astrocyte Alzheimer’s Brain Catalase CPT1 Inuit Neuron Oxidative stress Peroxide Peroxisome Mitochondria Microglia MCAD COX LOX PPAR alpha PPAR gamma PPAR delta 13HODE 9HODE 4HNE iNOS NO 

Terms

AA

Arachidonic acid (Omega-6; 20 carbon derivative of LA.)

ACoA

Acetyl coenzyme A (Raw material for the energy/cholesterol pathways.)

ALA

Alpha-linolenic acid (Omega-3–18 carbon plant-based polyunsaturated fat.)

BBB

Blood–brain barrier (Barrier between blood stream and brain.)

CD36

Cluster of differentiation 36 (Fatty acid translocase receptor.)

COX

Cyclooxygenase (Enzyme-catalysing oxidation of fatty acids.)

CPT1

Carnitine palmitoyltransferase (Acts as shuttle mainly for long-chain fats C:16–18 into mitochondria.)

DHA

Docosahexaenoic acid (Omega-3–22 carbon derivative of ALA.)

EPA

Eicosapentaenoic Acid (Omega-3 fatty acid C20:5.)

HMGCoA

3-hydroxy-3-methyl-glutaryl-CoA (Found in two forms, reductase and synthase. Reductase regulates cholesterol production. Synthase regulates HMGCoA production. HMGCoA is substrate for ketones or cholesterol.)

iNOS

Inducible nitric oxide synthase (Inducible isoform involved in stress response in macrophages, microglia and other tissues.)

LA

Linoleic acid (Omega-6–18 carbon plant-based polyunsaturated fat.)

LOX12/15

Lipoxygenases (Enzymes-catalysing oxidation of multiple lipid-based substrates.)

MCAD

Medium-chain acyl-coenzyme A (Dehydrogenation of fats C:6–12 in mitochondria and present in inner mitochondrial membrane.)

MDA

Malonaldehyde (Non-exclusive oxidation product of Omega-6.)

MCT

Medium-chain triglyceride (Triglyceride containing fats between C:6 and C:12.)

MCF

Medium-chain fat (A fat between C:6 and C:12)

NO

Nitric oxide (An important signalling messenger and oxidant.)

OLR1

Oxidised LDL receptor 1 (Receptor for oxidised LDL sometimes called LOX1.)

PA

Palmitic acid (Saturated fat C:16.)

PPAR

Peroxisome proliferator-activated receptor (3 forms alpha, gamma and delta.)

SA

Stearic acid (Saturated fat C:18.)

SCD1

Stearoyl-CoA desaturase (Delta-9-desaturase key to the formation of OA.)

SOD

Superoxide dismutase (Reduces superoxide to oxygen or peroxide.)

Wy14643

PPAR alpha activator (Activates PPAR alpha-related peroxisomes.)

4HNE

4-hydroxynonenal (Exclusive Omega-6 fats peroxidation aldehyde.)

4HHE

4-hydroxy hexenal (Exclusive Omega-3 fats peroxidation aldehyde.)

4HPNE

4-hydroperoxy 2-nonenal (Oxidation product of Omega-6 LA and likely AA.)

13HODE

13-hydroxy-9Z, 11E-octadecadienoic acid (Major LA oxidation product of LOX12/15, COX photo-oxidation and autoxidation.)

13HOTE

13-hydroxy-9Z, 11E, 15Z-octadecatrienoic acid (Major ALA oxidation equivalent of LA product 13HODE.)

References

  1. 1.
    Martínez M, Mougan I. Fatty acid composition of human brain phospholipids during normal development. J Neurochem. 1998;71(6):2528–33.CrossRefPubMedGoogle Scholar
  2. 2.
    Guest J, Garg M, Bilgin A, Grant R. Relationship between central and peripheral fatty acids in humans. Lipids Health Dis. 2013;28(12):79.CrossRefGoogle Scholar
  3. 3.
    Dhopeshwarkar G, Subramanian C. Metabolism of 1-14C linolenic acid in developing brain: II. Incorporation of radioactivity from 1-14C linolenate into brain lipids. Lipids. 1975;10(4):242–7.Google Scholar
  4. 4.
    Dhopeshwarkar G, James F. Fatty acid uptake by the brain: III. Incorporation of [I-14C] oleic acid into the adult ratbrain. doi: 10.1016/0005-2760(70)90169-4.
  5. 5.
    Freund Levi Y, Vedin I, Cederholm T, Basun H, Faxén Irving G, Eriksdotter M, Hjorth E, Schultzberg M, Vessby B, Wahlund L, Salem N Jr, Palmblad J. Transfer of omega-3 fatty acids across the blood-brain barrier after dietary supplementation with a docosahexaenoic acid-rich omega-3 fatty acid preparation in patients with Alzheimer’s disease: the OmegAD study. J Intern Med. 2014;275(4):428–36.Google Scholar
  6. 6.
    Gnaedinger J, Miller J, Latker C, Rapoport S. Cerebral metabolism of plasma [14C] palmitate in awake, adult rat: subcellular localization. Neurochem Res. 1988;13(1):21–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Miller J, Gnaedinger J, Rapoport S. Utilization of plasma fatty acid in rat brain: distribution of [14C] palmitate between oxidative and synthetic pathways. J Neurochem. 1987;49(5):1507–14.CrossRefPubMedGoogle Scholar
  8. 8.
    Dhopeshwarkar G, Mead J. Fatty acid uptake by the brain: II. Incorporation of [1-14C] palmitic acid into the adult rat brain. doi: 10.1016/0005-2760(69)90042-3.
  9. 9.
    Karmi A, Iozzo P, Viljanen A, Hirvonen J, Fielding BA, Virtanen K, Oikonen V, Kemppainen J, Viljanen T, Guiducci L, Haaparanta-Solin M, Någren K, Solin O, Nuutila P. Increased brain fatty acid uptake in metabolic syndrome. Diabetes. 2010;59(9):2171–7.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Rapoport S, Chang M, Spector A. Delivery and turnover of plasma-derived essential PUFAs in mammalian brain. J Lipid Res. 2001;42(5):678–85.PubMedGoogle Scholar
  11. 11.
    Spector R. Fatty acid transport through the blood-brain barrier. doi: 10.1111/j.1471-4159.1988.tb02958.x.
  12. 12.
    Avellini L, Terracina L, Gaiti A. Linoleic acid passage through the blood-brain barrier and a possible effect of age. Neurochem Res. 1994;19(2):129–33.CrossRefPubMedGoogle Scholar
  13. 13.
    Anderson G, Tso P, Connor W. Incorporation of chylomicron fatty acids into the developing rat brain. J Clin Invest. 1994;93:2764–7.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Mitchell R, On N, Del Bigio M, Miller D, Hatch G. Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells. J Neurochem. 2011;117(4):735–46.PubMedGoogle Scholar
  15. 15.
    Cornejo F, von Bernhardi R. Role of scavenger receptors in glia-mediated neuroinflammatory response associated with Alzheimer’s disease. http://dx.doi.org/10.1155/2013/895651.
  16. 16.
    Kim E, Febbraio M, Bao Y, Tolhurst A, Epstein J, Cho S. CD36 in the periphery and brain synergizes in stroke injury in hyperlipidemia. Ann Neurol. 2012;71(6):753–64. doi: 10.1002/ana.23569.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Luedecking-Zimmer E, DeKosky S, Chen Q, Barmada M, Kamboh M. Investigation of oxidized LDL-receptor 1 (OLR1) as the candidate gene for Alzheimer’s disease on chromosome 12. Hum Genet. 2002.Google Scholar
  18. 18.
    Banerji B, Subbaiah P, Gregg R, Bagdade J. Molecular species of phosphatidylcholine in abetalipoproteinemia: effect of lecithin: cholesterol acyltransferase and Lysolecithin acyltransferase. Lipid Res. 1989;30:1907–16.Google Scholar
  19. 19.
    DeMar J Jr, Lee H, Ma K, Chang L, Bell J, Rapoport S, Bazinet R. Brain elongation of linoleic acid is a negligible source of the arachidonate in brain phospholipids of adult rats. Biochim Biophys Acta. 2006;1761(9):1050–9 Epub 2006 Jul 8.CrossRefPubMedGoogle Scholar
  20. 20.
    Bourre J, Gozlan-Devillierre N, Morand O, Baumann N. Importance of exogenous saturated fatty acids during brain development and myelination in mice. Annales de Biologie Animale Biochimie Biophysique. 1979;19(1B):173–180.hal-00897441.Google Scholar
  21. 21.
    Gozlan-Devillierre N, Baumann N, Bourre J. Mouse brain uptake and metabolism of stearic acid. Biochimie. 1976;58(9):1129–33.CrossRefPubMedGoogle Scholar
  22. 22.
    Gozlan-Devillierre N, Baumann N, Bourre J. Incorporation of stearic acid into brain lipids in the developing brain: blood-brain relationships during development. Dev Neurosci. 1978;1(3–4):153–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Bourre J, Dinh L, Boithias C, Dumont O, Piciotti M, Cunnane S. Possible role of the choroid plexus in the supply of brain tissue with polyunsaturated fatty acids. Neurosci Lett. 1997;224(1):1–4.CrossRefPubMedGoogle Scholar
  24. 24.
    Kassmann C, Lappe-Siefke C, Baes M, Brügger B, Mildner A, Werner H, Natt O, Michaelis T, Prinz M, Frahm J, Nave K. Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes. Nat Genet. 2007;39:969–76.CrossRefPubMedGoogle Scholar
  25. 25.
    Mannelli L, Zanardelli M, Micheli L, Ghelardini C. PPAR-γ impairment alters peroxisome functionality in primary astrocyte cell cultures. http://dx.doi.org/10.1155/2014/546453.
  26. 26.
    Montgomery D. Astrocytes: form, functions, and roles in disease. Vet Pathol. 1994;31(2):145–67.CrossRefPubMedGoogle Scholar
  27. 27.
    Pardridge W. The blood-brain barrier: bottleneck in brain drug development. J ListNeuroRxv. 2005;2(1) JanPMC539316.Google Scholar
  28. 28.
    Wong A, Ye M, Levy A, Rothstein J, Bergles D, Searson P. The blood-brain barrier: an engineering perspective. Front Neuroeng. 2013;30(6):7.Google Scholar
  29. 29.
    Natali F, Siculella L, Salvati S, Gnoni G. Oleic acid is a potent inhibitor of fatty acid and cholesterol synthesis in C6 glioma cells. J Lipid Res. 2007;48(9):1966–75.CrossRefPubMedGoogle Scholar
  30. 30.
    Schönfeld P, Reiser G. Why does brain metabolism not favor burning of fatty acids to provide energy?—reflections on disadvantages of the use of free fatty acids as fuel for brain. J Cereb Blood Flow Metab. 2013;33(10):1493–9.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Jiang L, Gulanski B, De Feyter H, Weinzimer S, Pittman B, Guidone E, Koretski J, Harman S, Petrakis I, Krystal J, Mason G. Increased brain uptake and oxidation of acetate in heavy drinkers. J Clin Invest. 2013;123(4):1605–14.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Panov A, Orynbayeva Z, Vavilin V, Lyakhovich V. Fatty acids in energy metabolism of the central nervous system. Biomed Res Int. 2014;2014:472459.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Trompier D, Vejux A, Zarrouk A, Gondcaille C, Geillon F, Nury T, Savary S, Lizard G. Brain peroxisomes. Biochimie. 2014;98:102–10.CrossRefPubMedGoogle Scholar
  34. 34.
    Bird M, Munday L, Saggerson D, Clark J. Carnitine acyltransferase activities in rat brain mitochondria. Biochem J. 1985;226:323–30.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Sierra A, Gratacós E, Carrasco P, Clotet J, Ureña J, Serra D, Asins G, Hegardt F, Casals N. CPT1c is localized in endoplasmic reticulum of neurons and has carnitine palmitoyltransferase activity. J Biol Chem. 2008;283(11):6878–85.CrossRefPubMedGoogle Scholar
  36. 36.
    Esfandiari A, Soifiyoudine D, Paturneau-Jouas M. Inhibition of fatty acid beta-oxidation in rat brain cultured astrocytes exposed to the neurotoxin 3-nitropropionic acid. Dev Neurosci. 1997;19(4):312–20.CrossRefPubMedGoogle Scholar
  37. 37.
    Kuge Y, Yajima K, Kawashima H, Yamazaki H, Hashimoto N, Miyake Y. Brain uptake and metabolism of [1-11C] octanoate in rats: pharmacokinetic basis for its application as a radiopharmaceutical for studying brain fatty acid metabolism. Ann Nucl Med. 1995;9(3):137–42.CrossRefPubMedGoogle Scholar
  38. 38.
    Ebert D, Haller R, Walton M. Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy. J Neurosci. 2003;23(13):5928–35.PubMedGoogle Scholar
  39. 39.
    Edmond J, Robbins R, Bergstrom J, Cole R, de Vellis J. Capacity for substrate utilization in oxidative metabolism by neurons, astrocytes, and oligodendrocytes from developing brain in primary culture. J Neurosci Res. 1987;18(4):551–61.CrossRefPubMedGoogle Scholar
  40. 40.
    Leone T, Weinheimer C, Kelly D. A critical role for the peroxisome proliferator-activated receptor alpha (PPARalpha) in the cellular fasting response: the PPARalpha-null mouse as a model of fatty acid oxidation disorders. Proc Natl Acad Sci USA. 1999;96(13):7473–8.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Costantini L, Barr L, Vogel J, Henderson S. Hypometabolism as a therapeutic target in Alzheimer’s disease. BMC Neurosci. 2008;9(Suppl 2):S16.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Auestad N, Korsak R, Morrow J, Edmond J. Fatty acid oxidation and ketogenesis by astrocytes in primary culture. J Neurochem. 1991;56(4):1376–86.CrossRefPubMedGoogle Scholar
  43. 43.
    Greenberg C, Dilling L, Thompson G, Seargeant L, Haworth J, Phillips S, Chan A, Vallance H, Waters P, Sinclair G, Lillquist Y, Wanders R, Olpin S. The paradox of the carnitine palmitoyltransferase type Ia P479L variant in Canadian Aboriginal populations. Mol Genet Metab. 2009;96(4):201–7. Epub 13 Feb 2009.Google Scholar
  44. 44.
    Dobromylskyj P. The P479L gene for CPT-1a and fatty acid oxidation. http://high-fat-nutrition.blogspot.com. 27 Nov 2014.
  45. 45.
  46. 46.
    Puglianiello A, Germani D, Antignani S, Tomba GS, Cianfarani S. Changes in the expression of hypothalamic lipid sensing genes in rat model of intrauterine growth retardation (IUGR). Pediatr Res. 2007;61(4):433–7.CrossRefPubMedGoogle Scholar
  47. 47.
    Bonnefont J, Djouadi F, Prip-Buus C, Gobin S, Munnich A, Bastin J. Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects. doi: 10.1016/j.mam.2004.06.004.
  48. 48.
    Sidossis L, Stuart C, Shulman G, Lopaschuk G, Wolfe R. Glucose plus insulin regulate fat oxidation by controlling the rate of fatty acid entry into the mitochondria. J Clin Invest. 1996;98(10):2244–50.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Trauner D, Adams H. Effect of chain length of short-chain fatty acids on their effect on intracranial pressure in rabbits. J Neurol Neurosurg Psychiatry. 1982;45(5):428–30.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Heinbecker P. Studies on the metabolism of Eskimos. J Biol Chem. 1928;80:461–75.Google Scholar
  51. 51.
    Schonfeld P, Reiser G. Why does brain metabolism not favor burning of fatty acids to provide energy?—reflections on disadvantages of the use of free fatty acids as fuel for brain. doi: 10.1038/jcbfm.2013.128.
  52. 52.
    Melø T, Nehlig A, Sonnewald U. Neuronal-glial interactions in rats fed a ketogenic diet. Neurochem Int. 2006;48(6–7):498–507.Google Scholar
  53. 53.
    Lajtha N, Gibson G, Dienel G, editors. Handbook of neurochemistry and molecular neurobiology: brain energetics. Integration of molecular and cellular processes, 3rd edn. Springer; 2007, p. 212–3.Google Scholar
  54. 54.
    Jenness R. The composition of human milk. Semin Perinatol. 1979;3(3):225–39.PubMedGoogle Scholar
  55. 55.
    Edmond J, Auestad N, Robbins R, Bergstrom J. Ketone body metabolism in the neonate: development and the effect of diet. Fed Proc. 1985;44(7):2359–64.PubMedGoogle Scholar
  56. 56.
    Edmond J, Higa T, Korsak R, Bergner E, Lee W. Fatty acid transport and utilization for the developing brain. J Neurochem. 1998;70(3):1227–34.CrossRefPubMedGoogle Scholar
  57. 57.
    Anday E, Stanley C, Baker L, Winegrad A, Delivoria-Papadopoulos M. The fed human neonate-A suckling ketosis? Pediatr Res. 1977;11:510.CrossRefGoogle Scholar
  58. 58.
    Inokuchi T, Yoshida I, Kaneko A, Tashiro K, Tashiro S, Jogo M, Aoki K, Tanaka M. Neonatal ketosis is not rare: experience of neonatal screening using gas chromatography-mass spectrometry. J Chromatogr B Biomed Sci Appl. 2001;758(1):57–60.CrossRefPubMedGoogle Scholar
  59. 59.
    Tabernero A, Lavado E, Granda B, Velasco A, Medina J. Neuronal differentiation is triggered by oleic acid synthesized and released by astrocytes. J Neurochem. 2001;79(3):606–16.CrossRefPubMedGoogle Scholar
  60. 60.
    Yu X, Drackley J, Odle J. Rates of mitochondrial and peroxisomal β-oxidation of palmitate change during postnatal development and food deprivation in liver, kidney and heart of pigs. The Journal of nutrition. 1997 Sep 1;127(9):1814–21.Google Scholar
  61. 61.
    Salamon S, Csapo J. Composition of the mother’s milk II. Fat contents, fatty acid composition. A review. Acta Univ Sapientiae Alimentaria. 2009;2(2):196–234.Google Scholar
  62. 62.
    López-López A, López-Sabater M, Campoy-Folgoso C, Rivero-Urgell M, Castellote-Bargalló A. Fatty acid and sn-2 fatty acid composition in human milk from Granada (Spain) and in infant formulas. Eur J Clin Nutr. 2002;56(12):1242–54.CrossRefPubMedGoogle Scholar
  63. 63.
    Yessoufou A, Hichami A, Besnard P, Moutairou K, Khan N. Peroxisome proliferator-activated receptor alpha deficiency increases the risk of maternal abortion and neonatal mortality in murine pregnancy with or without diabetes mellitus: modulation of T cell differentiation. Endocrinology. 2006;147(9):4410–8.CrossRefPubMedGoogle Scholar
  64. 64.
    Cotter D, Ercal B, d’Avignon D, Dietzen D, Crawford P. Impairments of hepatic gluconeogenesis and ketogenesis in PPARα-deficient neonatal mice. Am J Physiol Endocrinol Metab. 2014;307(2):E176–85.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Iafolla A, Thompson R Jr, Roe C. Medium-chain acyl-coenzyme A dehydrogenase deficiency: clinical course in 120 affected children. J Pediatr. 1994;124(3):409–15.CrossRefPubMedGoogle Scholar
  66. 66.
    Mayell S, Edwards L, Reynolds F, Chakrapani A. Late presentation of medium-chain acyl-CoA dehydrogenase deficiency. J Inherit Metab Dis. 2007;30(1):104.CrossRefPubMedGoogle Scholar
  67. 67.
    MCAD Deficiency. Fatty acid oxidation defect (FAOD) newborn screening program Ontario. http://www.newbornscreening.on.ca/data/1/rec_docs/538_fs_mcad.pdf.
  68. 68.
    Pollitt R, Leonard J. Prospective surveillance study of medium chain acyl-CoA dehydrogenase deficiency in the UK. Arch Dis Child. 1998;79:116–9.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Skorin C, Necochea C, Johow V, Soto U, Grau M, Bremer J, Leighton F. Peroxisomal fatty acid oxidation and inhibitors of the mitochondrial carnitine palmitoyltransferase I in isolated rat hepatocytes. Biochem J. 1992;281(Pt 2):561–7.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Arai T, Wakabayashi S, Channing M, Dunn B, Der M, Bell J, Herscovitch P, Eckelman W, Rapoport S, Chang M. Incorporation of [1-carbon-11] palmitate in monkey brain using PET. J Nucl Med. 1995;36(12):2261–7.PubMedGoogle Scholar
  71. 71.
    Gnaiger E, editor. Oroboros. Mitochondrial pathways to complex i: respiration with pyruvate, glutamate and malate. Innsbruck: MiPNet Publications; 2008, p. 7–15.Google Scholar
  72. 72.
    Kiebish M, Han X, Cheng H, Chuang J, Seyfried T. Cardiolipin and electron transport chain abnormalities in mouse brain tumor mitochondria: lipidomic evidence supporting the Warburg theory of cancer. J Lipid Res. 2008;49(12):2545–56.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Hamilton L, Dufresne M, Joppé S, Petryszyn S, Aumont A, Calon F, Barnabé-Heider F, Furtos A, Parent M, Chaurand P, Fernandes K. Aberrant lipid metabolism in the forebrain niche suppresses adult neural stem cell proliferation in an animal model of Alzheimer’s disease. Cell Stem Cell. 2015;17(4):397–411.Google Scholar
  74. 74.
    Ebrahimi M, Sadeghizadeh M, Noori-Daloii M. Expression of inducible nitric oxide synthase gene (Inos) stimulated by hydrogen peroxide in human endothelial cells. J Sci Islamic Repub Iran. 2002;13(1):15–8.Google Scholar
  75. 75.
    Filiano A, Gadani S, Kipnis J. Interactions of innate and adaptive immunity in brain development and function. Brain Res. 2015;1617:18–27.Google Scholar
  76. 76.
    Shie F, Nivison M, Hsu P, Montine T. Modulation of microglial innate immunity in Alzheimer’s disease by activation of peroxisome proliferator-activated receptor gamma. Curr Med Chem. 2009;16(6):643–51.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Verheijden S, Beckers L, Casazza A, Butovsky O, Mazzone M, Baes M. Identification of a chronic non-neurodegenerative microglia activation state in a mouse model of peroxisomal β-oxidation deficiency. Glia. 2015;63(9):1606–20.CrossRefPubMedGoogle Scholar
  78. 78.
    Brown G, Neher J. Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. doi: 10.1007/s12035-010-8105-9.
  79. 79.
    Banik N, Lajtha A, Ray S. Handbook of neurochemistry and molecular neurobiology: brain and spinal cord trauma. Springer Science & Business Media; 2008. ISBN.038730343X.Google Scholar
  80. 80.
    Askalan R, Deveber G, Ho M, Ma J, Hawkins C. Astrocytic-inducible nitric oxide synthase in the ischemic developing human brain. Pediatr Res. 2006;60:687–92.CrossRefPubMedGoogle Scholar
  81. 81.
    Pérez-Ortiz J, Tranque P, Vaquero C, Domingo B, Molina F, Calvo S, Jordán J, Ceña V, Llopis J. Glitazones differentially regulate primary astrocyte and glioma cell survival involvement of reactive oxygen species and peroxisome proliferator-activated receptor-gamma. doi: 10.1074/jbc.M308518200.
  82. 82.
    König B, Rauer C, Rosenbaum S, Brandsch C, Eder K, Stangl G. Fasting Upregulates PPARalpha target genes in brain and influences pituitary hormone expression in a PPARalpha dependent manner. PPAR Res. 2009;2009:801609.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Li L, Wang Z, Zuo Z. Chronic intermittent fasting improves cognitive functions and brain structures in mice. PLoS One. 2013;8(6): e66069.Google Scholar
  84. 84.
    Lavin D, Joesting J, Chiu G, Moon M, Meng J, Dilger R, Freund G. Fasting induces an anti-inflammatory effect on the neuroimmune system which a high-fat diet prevents obesity. Silver Spring. 2011;19(8):1586–94.Google Scholar
  85. 85.
    Hall M, Quignodon L, Desvergne B. Peroxisome proliferator-activated receptor beta/delta in the brain: facts and hypothesis. PPAR Res. 2008;2008:780452.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Shureiqi I, Jiang W, Zuo X, Wu Y, Stimmel J, Leesnitzer L, Morris J, Fan H, Fischer S, Lippman S. The 15-lipoxygenase-1 product 13-S-hydroxyocta-decadienoic acid down-regulates PPAR-delta to induce apoptosis in colorectal cancer cells. doi: 10.1073/pnas.1631086100.
  87. 87.
    Desagher S, Glowinski K, Premont J. Astrocytes protect neurons from hydrogen peroxide toxicity. J Neurosci. 1996;16(8):2553–62.Google Scholar
  88. 88.
    Kruman I, Bruce-Keller A, Bredesen D, Waeg G, Mattson M. Evidence that 4-hydroxynonenal mediates oxidative stress-induced neuronal apoptosis. J Neurosci. 1997;17(13): 5089–100.Google Scholar
  89. 89.
    Lovell M, Markesbery W. Amyloid beta peptide, 4-hydroxynonenal and apoptosis. Curr Alzheimer Res. 2006;3(4):359–64.CrossRefPubMedGoogle Scholar
  90. 90.
    Kou J, Kovacs G, Höftberger R, Kulik W, Brodde A, Forss-Petter S, Hönigschnabl S, Gleiss A, Brügger B, Wanders R, Just W, Budka H, Jungwirth S, Fischer P, Berger J. Peroxisomal alterations in Alzheimer’s disease. Acta Neuropathol. 2011;122(3):271–83.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Dringen R, Gutterer J, Hirrlinger J. Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem. 2000;267:4912–6.CrossRefPubMedGoogle Scholar
  92. 92.
    McGee C, Lieberman P, Greenwood C. Dietary fatty acid composition induces comparable changes in cardiolipin fatty acid profile of heart and brain mitochondria. Lipids. 1996;31(6):611–6.CrossRefPubMedGoogle Scholar
  93. 93.
    Tyurina Y, Poloyac S, Tyurin V, Kapralov A, Jiang J, Anthonymuthu T, Kapralova V, Vikulina A, Jung M, Epperly M, Mohammadyani D, Klein-Seetharaman J, Jackson T, Kochanek P, Pitt B, Greenberger J, Vladimirov Y, Bayır H, Kagan V. A mitochondrial pathway for biosynthesis of lipid mediators. Nat Chem. 2014;6(6):542–52.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Chan R, Di Paolo G. Knockout punch: cardiolipin oxidation in trauma. Nat Neurosci. 2012;15(10):1325–7.CrossRefPubMedGoogle Scholar
  95. 95.
    Ji J, Kline A, Amoscato A, Samhan-Arias A, Sparvero L, Tyurin V, Tyurina Y, Fink B, Manole M, Puccio A, Okonkwo D, Cheng J, Alexander H, Clark R, Kochanek P, Wipf P, Kagan V, Bayır H. Lipidomics identifies cardiolipin oxidation as a mitochondrial target for redox therapy of brain injury. Nat Neurosci. 2012;15(10):1407–13. doi: 10.1038/nn.3195.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Zheng R, Dragomir A, Mishin V, Richardson J, Heck D, Laskin D, Laskin J. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats. Toxicol Appl Pharmacol. 2014;279(1):43–52.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Shie F, Neely M, Maezawa I, Wu H, Olson S, Jürgens G, Montine K, Montine T. Oxidized low-density lipoprotein is present in astrocytes surrounding cerebral infarcts and stimulates astrocyte interleukin-6 secretion. Am J Pathol. 2004;164(4):1173–81.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Liu Y, Rosenthal R, Haywood Y, Miljkovic-Lolic M, Vanderhoek J, Fiskum G. Normoxic ventilation after cardiac arrest reduces oxidation of brain lipids and improves neurological outcome. Stroke. 1998;29(8):1679–86.CrossRefPubMedGoogle Scholar
  99. 99.
    Hofacer R, Magrisso I, Jandacek R, Rider T, Tso P, Benoit S, McNamara R. Omega-3 fatty acid deficiency increases stearoyl-CoA desaturase expression and activity indices in rat liver: positive association with non-fasting plasma triglyceride levels. doi: 10.1016/j.plefa.2011.10.003. Epub 1 Nov 2011.
  100. 100.
    Tsutsumi T, Yamauchi E, Suzuki E, Watanabe S, Kobayashi T, Okuyama H. Effect of a high alpha-linolenate and high linoleate diet on membrane-associated enzyme activities in rat brain—modulation of Na+, K+- ATPase activity at suboptimal concentrations of ATP. Biol Pharm Bull. 1995;18:664–70.CrossRefPubMedGoogle Scholar
  101. 101.
    Porta N, Bourgois B, Galabert C, Lecointe C, Cappy P, Bordet R, Vallée L, Auvin S. Anticonvulsant effects of linolenic acid are unrelated to brain phospholipid cell membrane compositions. Epilepsia. 2009;50(1):65–71.CrossRefPubMedGoogle Scholar
  102. 102.
    Blondeau N, Nguemeni C, Debruyne D, Piens M, Wu X, Pan H, Hu X, Gandin C, Lipsky R, Plumier J, Marini A, Heurteaux C. Subchronic alpha-linolenic acid treatment enhances brain plasticity and exerts an antidepressant effect: a versatile potential therapy for stroke. Neuropsychopharmacology. 2009;34(12):2548–59.CrossRefPubMedGoogle Scholar
  103. 103.
    Cimini A, Benedetti E, Angelo B, Cristiano L, Falone S, Di Loreto S, Amicarelli F, Ceru M. Neuronal response of peroxisomal and peroxisome-related proteins to chronic and acute Aβ injury. doi: 10.2174/156720509788486518.
  104. 104.
    Kassmann CM. Myelin peroxisomes—Essential organelles for the maintenance of white matter in the nervous system. doi: 10.1016/j.biochi.2013.09.020.
  105. 105.
    Palta P, Samuel L, Miller E 3rd, Szanton S. Depression and oxidative stress: results from a meta-analysis of observational studies. Psychosom Med. 2014;76(1):12–9.CrossRefPubMedGoogle Scholar
  106. 106.
    Mazereeuw G, Herrmann N, Andreazza A, Khan MM, Lanctôt K. A meta-analysis of lipid peroxidation markers in major depression. http://dx.doi.org/10.2147/NDT.S89922.
  107. 107.
    Black C, Bot M, Scheffer P, Cuijpers P, Penninx B. Is depression associated with increased oxidative stress? A systematic review and meta-analysis. Psychoneuroendocrinology. 2015;51:164–75.CrossRefPubMedGoogle Scholar
  108. 108.
    Astarita G, Jung K, Vasilevko V, Dipatrizio N, Martin S, Cribbs D, Head E, Cotman C, Piomelli D. Elevated stearoyl-CoA desaturase in brains of patients with Alzheimer’s disease. PLoS ONE. 2011;6(10):e24777.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Yao-Borengasser A, Rassouli N, Varma V, Bodles A, Rasouli N, Unal R, Phanavanh B, Ranganathan G, McGehee R Jr, Kern P. Stearoyl-coenzyme A desaturase 1 gene expression increases after pioglitazone treatment and is associated with peroxisomal proliferator-activated receptor-gamma responsiveness. J Clin Endocrinol Metab. 2008;93(11):4431–9.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Patil S, Chan C. Palmitic and stearic fatty acids induce Alzheimer-like hyperphosphorylation of tau in primary rat cortical neurons. Neurosci Lett. 2005;384(3):288–93.CrossRefPubMedGoogle Scholar
  111. 111.
    Chinnici C, Yao Y, Ding T, Funk CD, Praticò D. Absence of 12/15 lipoxygenase reduces brain oxidative stress in apolipoprotein E-deficient mice. Am J Pathol. 2005;167(5):1371–7.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Praticò D, Zhukareva V, Yao Y, Uryu K, Funk C, Lawson J, Trojanowski J, Lee V. 12/15-lipoxygenase is increased in Alzheimer’s disease: possible involvement in brain oxidative stress. Am J Pathol. 2004;164(5):1655–62.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Yoshida Y, Yoshikawa A, Kinumi T, Ogawa Y, Saito Y, Ohara K, Yamamoto H, Imai Y, Niki E. Hydroxyoctadecadienoic acid and oxidatively modified peroxiredoxins in the blood of Alzheimer’s disease patients and their potential as biomarkers. Neurobiol Aging. 2009;30(2):174–85.CrossRefPubMedGoogle Scholar
  114. 114.
    Benedetti E, D’Angelo B, Cristiano L, Di Giacomo E, Fanelli F, Moreno S, Cecconi F, Fidoamore A, Antonosante A, Falcone R, Ippoliti R, Giordano A, Cimini A. Involvement of peroxisome proliferator-activated receptor β/δ (PPAR β/δ) in BDNF signaling during aging and in Alzheimer disease: Possible role of 4-hydroxynonenal (4-HNE). doi: 10.4161/cc.28295.
  115. 115.
    McGrath L, McGleenon B, Brennan S, McColl D, McILroy S, Passmore A. Increased oxidative stress in Alzheimer’s disease as assessed with 4-hydroxynonenal but not malondialdehyde. QJM. 2001;94(9):485–90.CrossRefPubMedGoogle Scholar
  116. 116.
    Patil S, Balu D, Melrose J, Chan C. Brain region-specificity of palmitic acid-induced abnormalities associated with Alzheimer’s disease. doi: 10.1186/1756-0500-1-20.
  117. 117.
    Iuliano L, Pacelli A, Ciacciarelli M, Zerbinati C, Fagioli S, Piras F, Orfei M, Bossù P, Pazzelli F, Serviddio G, Caltagirone C, Spalletta G. Plasma fatty acid lipidomics in amnestic mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis. 2013;36(3):545–53.PubMedGoogle Scholar
  118. 118.
    Snigdha S, Astarita G, Piomelli D, Cotman C. Effects of diet and behavioral enrichment on free fatty acids in the aged canine brain. Neuroscience. 2012;27(202):326–33.CrossRefGoogle Scholar
  119. 119.
    Iida K, Kawakami Y, Suzuki H, Sone H, Shimano H, Toyoshima H, Okuda Y, Yamada N. PPAR gamma ligands, troglitazone and pioglitazone, up-regulate expression of HMG-CoA synthase and HMG-CoA reductase gene in THP-1 macrophages. FEBS Lett. 2002;520(1–3):177–81.CrossRefPubMedGoogle Scholar
  120. 120.
    Puglielli L, Tanzi R, Kovacs D. Alzheimer’s disease: the cholesterol connection. Nat Neurosci. 2003;6(4):345–51.CrossRefPubMedGoogle Scholar
  121. 121.
    Cordle A, Landreth G. 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors attenuate Beta-amyloid-induced microglial inflammatory responses. J Neurosci. 2005;25(2):299–307.Google Scholar
  122. 122.
    Monteiro-Cardoso V, Oliveira M, Melo T, Domingues M, Moreira P, Ferreiro E, Peixoto F, Videira R. Cardiolipin profile changes are associated to the early synaptic mitochondrial dysfunction in Alzheimer’s disease. J Alzheimers Dis. 2015;43(4):1375–92.PubMedGoogle Scholar
  123. 123.
    Hamilton L, Dufresne M, Joppé S, Petryszyn S, Aumont A, Calon F, Barnabé-Heider F, Furtos A, Parent M, Chaurand P, Fernandes K. Aberrant lipid metabolism in the forebrain niche suppresses adult neural stem cell proliferation in an animal model of Alzheimer’s disease. doi: 10.1016/j.stem.2015.08.001.
  124. 124.
    Fanelli F, Sepe S, D’Amelio M, Bernardi C, Cristiano L, Cimini A, Cecconi F, Ceru M, Moreno S. Age-dependent roles of peroxisomes in the hippocampus of a transgenic mouse model of Alzheimer’s disease. Mol Neurodegener. 2013;2(8):8.CrossRefGoogle Scholar
  125. 125.
    Tremblay-Mercier J. Peroxisome Proliferator activated receptor alpha agonists: a potential tool for a healthy aging brain. In: Gallelli L, editor. Pharmacology. ISBN 978-953-51-0222-9.Google Scholar
  126. 126.
    Willette A, Bendlin B, Starks E, Birdsill A, Johnson S, Christian B, Okonkwo O, La Rue A, Hermann B, Koscik R, Jonaitis E, Sager M, Asthana S. Association of insulin resistance with cerebral glucose uptake in late middle-aged adults at risk for Alzheimer disease. JAMA Neurol. 2015;72(9):1013–20.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Willette A, Modanlo N, Kapogiannis D. Alzheimer’s disease neuroimaging initiative. Insulin resistance predicts medial temporal hypermetabolism in mild cognitive impairment conversion to Alzheimer disease. Diabetes. 2015;64(6):1933–40.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    de la Monte S, Wands J. Alzheimer’s disease is type 3 diabetes-evidence reviewed. J Diabetes Sci Technol. 2008;2(6):1101–13.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Atamna H, Frey W 2nd. Mechanisms of mitochondrial dysfunction and energy deficiency in Alzheimer’s disease. Mitochondrion. 2007;7(5):297–310.CrossRefPubMedGoogle Scholar
  130. 130.
    Jimenez-Del-Rio M, Velez-Pardo C. The bad, the good, and the ugly about oxidative stress. Oxidative medicine and cellular longevity. 2012 Apr 26;2012.Google Scholar
  131. 131.
    Noble K, Houston S, Brito N, Bartsch H, Kan E, Kuperman J, Akshoomoff N, Amaral D, Bloss C, Libiger O, Schork N, Murray S, Casey B, Chang L, Ernst T, Frazier J, Gruen J, Kennedy D, Zijl P, Mostofsky S, Kaufmann W, Kenet T, Dale A, Jernigan T, Sowell E. Family income, parental education and brain structure in children and adolescents. doi: 10.1038/nn.3983.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Chair of the McCarrison SocietyInstitute of Chartered AccountantsSt Lawrence, JerseyUK

Personalised recommendations