Advertisement

Bioactive Oxidised Products of Omega-6 and Omega-3, Excess Oxidative Stress, Oxidised Dietary Intake and Antioxidant Nutrient Deficiencies, in the Context of a Modern Diet

  • Robert Andrew Brown
Chapter

Abstract

The physiological and metabolic importance of linoleic acid (LA) and alpha linolenic acid (ALA), the LA/ALA balance, their relevance to oxidative stress signalling and metabolic function are underappreciated. LA and ALA followed by other 18-carbon fats are the preferred peroxisomal beta-oxidation substrates. Peroxisomal beta-oxidation products include short-chain fats, ACoA and peroxide. Human function, particularly existence, is conditional on essential nutrients. LA and ALA are the primary lipids in plant material and most common terrestrial lipids; supply is dependent on environmental fecundity; their oxidised products are multiple and bioactive in many pathways, required for reproduction and may ultimately synchronise reproduction to environmental LA availability, control human capacity to reproduce and related mating behavioural characteristics. Oxidised and elongated LA products—key regulators in important biological mechanisms and systems including; macrophage- and microglia-related tissue destruction; creation and repair; oxidative stress-based signalling for; inflammation; immune function and defence; hormone production; pheromones; placental and foetal development; parturition; energy regulation; and fat deposition,—and ultimately control reproductive capacity. This explains why LA oxylipins and related products play central roles in ‘Western’ ‘inflammatory’ non-communicable diseases, including obesity. Oxidised LA products 9 and 13HODEs and family, the most common plasma oxylipins, with parent LA, are important LDL components, and when present in excess with their downstream products including Oxo-HODE, 4HNE and MDA, predicate non-communicable ‘Western’ diseases, with roles in inflammation, tissue repair, maintenance of epithelial cells, macrophage and microglial function. 13HODE is the primary endogenous activator of PPAR gamma; excess PPAR gamma activation, along with iNOS stimulation and NO blocking of peroxisomal catalase production, promotes peroxide-based oxidative stress, including peroxisome-assisted macrophage oxidative burst capacity. Oxidation by peroxide forms highly damaging hydroxyl radicals; down-stream products include 4HNE, which results in increased oxidative stress, thereby activating COX and LOX enzymes. LA and ALA are overall preferred LOX substrates and secondary COX substrates; products include 13HODE. 13HODE via PPAR gamma activates OLR1 and CD36; oxidised LDL receptor activity is associated with ‘Western diseases’ including cancer, diabetes, asthma and neurological, vascular, cardiac, obesity and fertility-related conditions. Intriguingly, OLR1 is ‘oncogenic’. PPAR gamma-related peroxisomes direct ACoA to repair pathways, including cholesterol and fat production via HMGCoA pathways. Energy deficit activates PPAR alpha peroxisomal beta-oxidation pathways. In contrast to PPAR gamma, PPAR alpha and delta activation signals for increased catalase antioxidant production, as well as for production of short-chain fats and ACoA, which is utilised via acetate, malate and ketones production providing alternate substrate for mitochondrial energy production. ALA deficits and excess dietary LA, including from vegetable oil, in the context of ‘Western’ nutrient-depleted pre-oxidised diets are significant health risk factors, including in high-fat low-carbohydrate ‘paleo’ diets. Phosphatidylcholine including of dietary origin is the main component in VLDL, LDL and chylomicron shells; its preference for polyunsaturated fats at the SN2 position gives phosphatidylcholine particular relevance to the delivery of polyunsaturated fats to cells, hence membrane composition and consequent function; for example, LA—a key cardiolipin component—when oxidised in situ reduces mitochondrial function, including ATP metabolism, and ultimately regulates apoptosis. Dietary pre-oxidation increases crosslinking and AGE formation, damaging antioxidant related nutrients including glutathione, related amino acid cysteine, and phyto-antioxidants including fat-soluble vitamin E and retinoids. Pre-oxidised nutrient-depleted diets containing excess LA and deficient in ALA underlie cellular and energy pathway dysfunction, fuelling non-communicable ‘Western diseases’.

Keywords

ALA alpha linolenic LA linoleic Chylomicron Phospholipid Phosphatidylcholine Plasma LDL Epithelial Vascular plaque Brain Cancer Obesity Cysteine Selenium Glutathione Catalase Hydroxyl Peroxide Oxidative stress Peroxisome Mitochondria Macrophages Microglia 13HODE 9HODE Oxo-HODE MDA NO iNOS eNOS 4HNE LOX COX PPAR alpha PPAR gamma PPAR delta 

Terms

AA

Arachidonic acid (omega-6 20-carbon derivative of LA)

ACOX1

Acyl-CoA oxidase (first step in peroxisomal beta-oxidation)

ACoA

Acetyl coenzyme A (raw material for the energy/cholesterol pathways)

AGE

Advanced glycation end-product (non-enzymatic covalently bound sugar to protein or lipid)

ALA

Alpha linolenic acid (omega-3 18-carbon plant-based polyunsaturated fat)

APOE

Apolipoprotein E (lipid transport signature protein)

ATP

Adenosine triphosphate (enzyme used as an energy carrier)

BBB

Blood–brain barrier (barrier between blood stream and brain)

CD36

Cluster of differentiation 36 (fatty acid translocase receptor)

COX

Cyclooxygenase (enzyme catalysing oxidation of fatty acids)

CoQ10

Ubiquinol (fat-soluble component of mitochondrial electron transport)

CPT1

Carnitine palmitoyl transferase (acts as shuttle mainly for long-chain fats C:16-18 into mitochondria)

DHA

Docosahexaenoic acid (omega-3 22-carbon derivative of ALA)

eNOS

Endothelial nitric oxide synthase 3 (constitutively expressed enzyme produces nitric oxide)

EPA

Eicosapentaenoic acid (omega-3 fatty acid C20:5)

FABP

Fatty acid binding protein (family of transport proteins)

FAS

Fatty acid synthase (enzyme system to make palmitate)

FAT1

FAT1 transgenic mouse (inserted desaturase converts omega-6 to omega-3s)

FGF

Fibroblast growth factors (involved in angiogenesis and repair)

GSH

Glutathione(s) (a very important antioxidant family)

GLA

Gamma linoleic acid (omega-6 fatty acid C18:3)

HAEC

Human aortic endothelial cells (human aortic endothelial cells)

HbA1c

Glycated haemoglobin (non-enzymatic glycated haemoglobin)

HMGCoA

3-Hydroxy-3-methylglutaryl-CoA (found in two forms reductase and synthase. Reductase regulates the cholesterol production. Synthase regulates HMGCoA production. HMGCoA is substrate for ketones or cholesterol)

HSL

Hormone-sensitive lipase (different forms mobilise lipids from triglycerides and esters also from the adipose tissue)

iNOS

Inducible nitric oxide synthase (inducible isoform involved in stress response in macrophages microglia and other tissues)

LA

Linoleic acid (omega-6 18-carbon plant-based polyunsaturated fat)

LOX5

Lipoxygenase (enzyme catalysing oxidation, including AA and EPA)

LOX12/15

Lipoxygenases (enzymes catalysing the oxidation of multiple lipid-based substrates)

LDLR

Low-density lipoprotein (LDL) receptor (LDL receptor for minimally oxidised LDL)

LPL

Lipoprotein lipase (mobilises the lipids from chylomicrons, VLDL, LDL, both at the vascular face and intercellularly)

Lp-PLA2

Lipoprotein-associated (hydrolyses phospholipids with phospholipase A2)

LTB4

Leukotriene B4 (product of LOX5 action on AA, a messenger)

MCAD

Medium-chain acyl-coenzyme A (dehydrogenation of fats C6-12 in mitochondria and present in inner mitochondrial membrane)

MDA

Malondialdehyde (non-exclusive oxidation product of omega-6)

MCT

Medium-chain triglyceride (triglyceride containing fats between C6 and C12)

NAPDH

NAPDH oxidase (generates superoxide in phagocytes including macrophages and potentially microglia)

NAFLD

Non-alcoholic fatty liver disease (fat deposition in the liver not due to alcohol)

NEFA

Non-esterified fatty acid (fatty acids not attached to a carrier)

NO

Nitric oxide (an important signalling messenger and oxidant)

OA

Oleic acid (omega-9 monosaturated fat C18:1)

OLR1

Oxidised LDL receptor 1 (receptor for oxidised LDL, sometimes called LOX1)

4ONE

Trans-4-oxo-2-nonenal (omega-6 product common in the adipose tissue)

Oxo-HODE

Oxooctadecadienoic acid (oxidation products of HODEs, also called KODEs)

PA

Palmitic acid (saturated fat C:16)

PGE2

Prostaglandin E2 (primary COX2 product of AA)

PPAR

Peroxisome proliferator-activated receptor (3 forms alpha, gamma and delta)

P450

Cytochromes P450 (family of often oxidative enzymes)

ROS

Reactive oxygen species (reactive molecules containing oxygen)

RXR

Retinoid X receptor (receptor that hosts PPARs in conjunction with other activators including retinoids)

SA

Stearic acid (saturated fat C:18)

SCD1

Stearoyl-CoA desaturase (delta-9-desaturase, a key to the formation of OA)

SOD

Superoxide dismutase (reduces superoxide to oxygen or peroxide)

SN2

SN2 position (the location of fat in triglycerides or phospholipids)

SREBP-1c

Sterol regulatory element-binding transcription factor 1 (a protein regulating lipid and glucose metabolism)

TRPV1

Capsaicin receptor (pain- and temperature-related receptor)

VEGF

Vascular endothelial growth factor (a protein signalling angiogenesis)

Wy14643

PPAR alpha activator (activates PPAR alpha-related peroxisomes)

4HNE

4-Hydroxynonenal (exclusive omega-6 fats peroxidation aldehyde)

4HHE

4-Hydroxy hexenal (exclusive omega-3 fats peroxidation aldehyde)

4HPNE

4-Hydroperoxy 2-nonenal (oxidation product of omega-6 LA and likely AA)

9HODE

9-Hydroxy-10E, 12Z-octadecadienoic acid (major LA oxidation product of LOX12/15, COX, photo-oxidation and autoxidation)

13HODE

13-Hydroxy-9Z, 11E-octadecadienoic acid (major LA oxidation product of LOX12/15, COX photo-oxidation and autoxidation)

13HOTE

13-Hydroxy-9Z, 11E, 15Z-octadecatrienoic acid (major ALA oxidation equivalent of LA product 13HODE)

15HETE

15-Hydroxy-eicosatetraenoic acid (major AA LOX15 oxidation product)

15d-PGJ2

15-Deoxy-Δ12, 14-prostaglandin J2 (downstream AA COX2 oxidation product and PPAR gamma activator)

Ptd-cho

Phosphatidylcholine (A major phospholipid in mammals and plants)

References

  1. 1.
    Dewhurst R, Shingfield K, Lee M, Scollan N. Increasing the concentrations of beneficial polyunsaturated fatty acids in milk produced by dairy cows in high-forage systems. Anim Feed Sci Technol. 2006;131:168–206.CrossRefGoogle Scholar
  2. 2.
    Hallebeek J. Dietary control of equine plasma triacylglycerols. Universiteit Utrecht. ISBN 9039329826.Google Scholar
  3. 3.
    Crawford M, Marsh D. The driving force. New York: Harper Row; 1989. ISBN 0-06-039069-7.Google Scholar
  4. 4.
    Brown R, Omega six the devils fat—a message of dietary hope. Jersey: Les Creux Limited; 2009. ISBN 978-0-9557974-0-7.Google Scholar
  5. 5.
    Rivers J, Frankel T. Essential fatty acid deficiency. Br Med Bull. 1981;37(1):59–64.PubMedGoogle Scholar
  6. 6.
    Terlecky S, Terlecky L, Giordano C. Peroxisomes, oxidative stress, and inflammation. World J Biol Chem. 2012;3(5):93–7.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Sierra A, Navascués J, Cuadros M, Calvente R, Martín-Oliva D, Ferrer-Martín R, Martín-Estebané M, Carrasco M, Marín-Teva J. Expression of inducible nitric oxide synthase (iNOS) in microglia of the developing quail retina. doi: 10.1371/journal.pone.0106048.
  8. 8.
    Khaidakov M, Mitra S, Wang X, Ding Z, Bora N, Lyzogubov V, Romeo F, Schichman S, Mehta J. Large impact of low concentration oxidized LDL on angiogenic potential of human endothelial cells: a microarray study. PLoS ONE. 2012;7(10):e47421.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Fournier T, Handschuh K, Tsatsaris V, Guibourdenche J, Evain-Brion D. Role of nuclear receptors and their ligands in human trophoblast invasion. J Reprod Immunol. 2008;77(2):161–70 Epub 2007 Aug 15.PubMedCrossRefGoogle Scholar
  10. 10.
    Barak Y, Nelson M, Ong E, Jones Y, Ruiz-Lozano P, Chien K, Koder A, Evans R. PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell. 1999;4(4):585–95.PubMedCrossRefGoogle Scholar
  11. 11.
    Schild R, Schaiff W, Carlson M, Cronbach E, Nelson D, Sadovsky Y. The activity of PPARγ in primary human trophoblasts is enhanced by oxidized lipids. doi: 10.1210/jcem.87.3.8284.
  12. 12.
    Kämmerer I, Ringseis R, Biemann R, Wen G, Eder K. 13-hydroxy linoleic acid increases expression of the cholesterol transporters ABCA1, ABCG1 and SR-BI and stimulates apoA-I-dependent cholesterol efflux in RAW264.7 macrophages. Lipids Health Dis. 2011;10:222.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Chawla A. Control of macrophage activation and function by PPARs. Circ Res. 2010;106:1559–69.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Chawla A, Barak Y, Nagy L, Liao D, Tontonoz P, Evans R. PPAR-gamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med. 2001;7(1):48–52.PubMedCrossRefGoogle Scholar
  15. 15.
    Vangaveti V, Baune B, Kennedy R. Hydroxyoctadecadienoic acids: novel regulators of macrophage differentiation and atherogenesis. Ther Adv Endocrinol Metab. 2010;1(2):51–60.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol. 2014;14:392–404.PubMedCrossRefGoogle Scholar
  17. 17.
    Hume D. The biology of macrophages—an online review. The Roslin Institute and Royal Dick School of Veterinary Studies. Edition 1.1, May 2012. http://www.macrophages.com/macrophage-review.
  18. 18.
    Prinz M, Priller J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci. 2014;15:300–12.PubMedCrossRefGoogle Scholar
  19. 19.
    Ginhoux F, Lim S, Hoeffel G, Low D, Huber T. Origin and differentiation of microglia. Front Cell Neurosci. 2013;7:45.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Legendre P, Le Corronc H. Microglial cells and development of the embryonic central nervous system. Med Sci (Paris). 2014;30(2):147–52.CrossRefGoogle Scholar
  21. 21.
    Arnold T, Betsholtz C. The importance of microglia in the development of the vasculature in the central nervous system. Vascular Cell. 2013;5:4.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Spath J. Oxylipins in human plasma—method development and dietary effects on levels. Degree Thesis in Chemistry 30 ECTS Master’s Level. UMEA Universitet.Google Scholar
  23. 23.
    Canny G, Lessey B. The role of Lipoxin A4 in endometrial biology and endometriosis. Mucosal Immunol. 2013;6:439–50.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Li Q, Cheon Y, Kannan A, Shanker S, Bagchi I, Bagchi M. A novel pathway involving progesterone receptor, 12/15-Lipoxygenase-derived eicosanoids, and peroxisome proliferator-activated receptor γ regulates implantation in mice. doi: 10.1074/jbc.M311773200.
  25. 25.
    Awasthi Y, editors. Toxicology of glutathione transferases. New York: CRC Press; 2006. p. 206–212Google Scholar
  26. 26.
    Mabalirajan U, Aich J, Leishangthem G, Sharma S, Dinda A, Ghosh B. Effects of vitamin E on mitochondrial dysfunction and asthma features in an experimental allergic murine model. J Appl Physiol (1985). 2009;107(4):1285–92.CrossRefGoogle Scholar
  27. 27.
    MacLennan M, Ma D. Role of dietary fatty acids in mammary gland development and breast cancer. Breast Cancer Res. 2010;12(5):211.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Hilakivi-Clarke L, Clarke R, Onojafe I, Raygada M, Cho E, Lippman M. A maternal diet high in n − 6 polyunsaturated fats alters mammary gland development, puberty onset, and breast cancer risk among female rat offspring. Proc Natl Acad Sci USA. 1997;94(17):9372–7.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Espino J, Pariente J, Rodríguez A. Oxidative stress and immunosenescence: therapeutic effects of melatonin. Oxid Med Cell Longev. 2012;2012:670294.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Xiang S, Mao L, Yuan L, Duplessis T, Jones F, Hoyle G, Frasch T, Dauchy R, Blask D, Chakravarty G, Hill S. Impaired mouse mammary gland growth and development is mediated by melatonin and its MT1G protein-coupled receptor via repression of ERα, Akt1, and Stat5. J Pineal Res. 2012;53(3):307–18.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Patterson E, Wall R, Fitzgerald G, Ross R, Stanton C. Health implications of high dietary omega-6 polyunsaturated fatty acids. J Nutr Metab. 2012;2012:539426.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Arbuckle D, MacKinnon J, Innis M. Formula 18:2(n-6) and 18:3(n-3) content and ratio influence long-chain polyunsaturated fatty acids in the developing piglet liver and central nervous system. J Nutr. 1994;124(2):289–98.Google Scholar
  33. 33.
    Hibbeln J, Nieminen L, Blasbalg T, Riggs J, Lands W. Healthy intakes of n − 3 and n − 6 fatty acids: estimations considering worldwide diversity. Am J Clin Nutr. 2006;83(6):S1483–S1493.Google Scholar
  34. 34.
    Mathias R, Fu W, Akey J, Ainsworth H, Torgerson D, Ruczinski I, Sergeant S, Barnes K, Chilton F. Adaptive evolution of the FADS gene cluster within Africa. PLoS ONE. 2012;7(9):e44926.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Merino D, Ma D, Mutch D. Genetic variation in lipid desaturases and its impact on the development of human disease. Lipids Health Dis. 2010;18(9):63.CrossRefGoogle Scholar
  36. 36.
    Bourre J. Roles of unsaturated fatty acids (especially omega-3 fatty acids) in the brain at various ages and during ageing. J. Nutr. Health Aging. 2004;8(3).Google Scholar
  37. 37.
    Simopoulos A. Essential fatty acids in health and chronic disease, Am J Clin Nutr. 1999;70(suppl):560S–569S.Google Scholar
  38. 38.
    Keen C, Uriu-Hare J, Hawk S, Jankowski M, Daston G, Kwik-Uribe C, Rucker R. Effect of copper deficiency on prenatal development and pregnancy outcome. Am J Clin Nutr. 1998;67(suppl):1003S–11S.PubMedGoogle Scholar
  39. 39.
    Noble K, Houston S, Brito N, Bartsch H, Kan E, Kuperman J, Akshoomoff N, Amaral D, Bloss C, Libiger O, Schork N, Murray S, Casey B, Chang L, Ernst T, Frazier J, Gruen J, Kennedy D, Zijl P, Mostofsky S, Kaufmann W, Kenet T, Dale A, Jernigan T, Sowell E. Family income, parental education and brain structure in children and adolescents. doi: 10.1038/nn.3983.
  40. 40.
    Morse M. Benefits of docosahexaenoic acid, folic acid, vitamin d and iodine on foetal and infant brain development and function following maternal supplementation during pregnancy and lactation. Nutrients. 2012;4(7), 799–840. ISSN 2072-6643.Google Scholar
  41. 41.
    Simopoulos A. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother. 2002;56:365–79.PubMedCrossRefGoogle Scholar
  42. 42.
    Keen C, Hanna L, Lanoue L, Uriu-Adams Y, Rucker R, Clegg M. Developmental consequences of trace mineral deficiencies in rodents: acute and long-term effects. J Nutr. 2003;133:1477S–80S.PubMedGoogle Scholar
  43. 43.
    Fukayama M, Tan H, Wheeler W, Wei C. Reactions of aqueous chlorine and chlorine dioxide with model food compounds. Environ Health Perspect. 1986;69:267–74.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Dr. Stephen. On chlorinated compounds formed during chlorine wash of chicken meat. Client Report. FW0883, Institute of Environmental Science & Research Limited Christchurch Science Centre.Google Scholar
  45. 45.
    Ladikos D, Lougovois V. Lipid oxidation in muscle foods: a review. Food Chem. 1990;35:295–314.CrossRefGoogle Scholar
  46. 46.
    Hrynets Y, Omana D, Xu Y, Betti M. Impact of citric acid and calcium ions on acid solubilization of mechanically separated turkey meat: effect on lipid and pigment content. Poult Sci. 2011;90(2):458–66.PubMedCrossRefGoogle Scholar
  47. 47.
    Linley E, Denyer S, McDonnell G, Simons C, Maillard J. Use of hydrogen peroxide as a biocide: new consideration of its mechanisms of biocidal action. J Antimicrob Chemother. 2012;. doi: 10.1093/jac/dks129.PubMedGoogle Scholar
  48. 48.
    Jonnalagadda S, Harnack L, Liu R, McKeown N, Seal C, Liu S, Fahey G. Putting the whole grain puzzle together: health benefits associated with whole grains—summary of American Society for Nutrition 2010 satellite symposium. J Nutr. 2011;141(5):1011S–22S.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Tourdot B, Ahmed I, Holinstat M. The emerging role of oxylipins in thrombosis and diabetes. doi: 10.3389/fphar.2013.00176.
  50. 50.
    Silaste M, Rantala M, Alfthan G, Aro A, Witztum J, Kesäniemi Y, Hörkkö S. Changes in dietary fat intake alter plasma levels of oxidized low-density lipoprotein and lipoprotein(a). Arterioscler Thromb Vasc Biol. 2004;24(3):498–503 Epub 2004 Jan 22.PubMedCrossRefGoogle Scholar
  51. 51.
    Ramsden C, Ringel A, Feldstein A, Taha A, MacIntosh B, Hibbeln J, Majchrzak-Hong S, Faurot K, Rapoport S, Cheon Y, Chung Y, Berk M, Mann J. Lowering dietary linoleic acid reduces bioactive oxidized linoleic acid metabolites in humans. Prostaglandins Leukot Essent Fatty Acids. 2012;87(4–5):135–41.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Alvheim A, Malde M, Osei-Hyiaman D, Lin Y, Pawlosky R, Madsen L, Kristiansen K, Frøyland L, Hibbeln J. Dietary linoleic acid elevates endogenous 2-AG and anandamide and induces obesity. doi: 10.1038/oby.2012.38.
  53. 53.
    Miller E, Dickinson B, Chang C. Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signalling. Proc Natl Acad Sci USA. 2010;107(36):15681–6.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Reis A, Spickett M. Chemistry of phospholipid oxidation. doi: 10.1016/j.bbamem.2012.02.002.
  55. 55.
    Schuchardt J, Schmidt S, Kressel G, Dong H, Willenberg I, Hammock B, Hahn A, Schebb N. Comparison of free serum oxylipin concentrations in hyper- vs. normolipidemic men.  10.1016/j.plefa.2013.04.001.
  56. 56.
    Zhong H, Lu J, Xia L, Zhu M, Yin H. Formation of electrophilic oxidation products from mitochondrial cardiolipin in vitro and in vivo in the context of apoptosis and atherosclerosis. Redox Biol. 2014;2:878–83.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Grootveld M, Atherton M, Sheerin A, Hawkes J, Blake D, Richens T, Silwood C, Lynch E, Claxson A. In vivo absorption, metabolism, and urinary excretion of alpha, beta-unsaturated aldehydes in experimental animals. J. Clin. Invest. 1998;101:1210–8.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Barceló-Coblijn G, Murphy E. Alpha-linolenic acid and its conversion to longer chain n3 fatty acids: Benefits for human health and a role in maintaining tissue n3 fatty acid levels. doi: 10.1016/j.plipres.2009.07.002.
  59. 59.
    Farooqui A. Beneficial effects of fish oil in the brain. Berlin: Springer; 2009. ISBN 978-1-4419-0543-7.Google Scholar
  60. 60.
    Farooqui A. Lipid mediators and their metabolism in the brain. Berlin: Springer; 2011. ISBN 978-1-4419-9939-9.Google Scholar
  61. 61.
    Hansen A, Haggard M, Boelsche A, Adam D, Wise H. Essential fatty acids in infant nutrition iii. Clinical manifestations of linoleic acid deficiency. J. Nutr. 1958.Google Scholar
  62. 62.
    Drakaki E, Dessinioti C, Antoniou C. Airpollution and the skin. doi: 10.3389/fenvs.2014.00011.
  63. 63.
    Alsalem M, Wong A, Millns P, Arya P, Chan M, Bennett A, Barrett D, Chapman V, Kendall D. The contribution of the endogenous TRPV1 ligands 9-HODE and 13-HODE to nociceptive processing and their role in peripheral inflammatory pain mechanisms. Br J Pharmacol. 2013;168(8):1961–74.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Patwardhan A, Akopian A, Ruparel N, Diogenes A, Weintraub S, Uhlson C, Murphy R, Hargreaves K. Heat generates oxidized linoleic acid metabolites that activate TRPV1 and produce pain in rodents. J Clin Invest. 2010;120(5):1617–26.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Sisignano M, Angioni C, Ferreiros N, Schuh C, Suo J, Schreiber Y, Dawes J, Antunes-Martins A, Bennett D, McMahon S, Geisslinger G, Scholich K. Synthesis of lipid mediators during UVB-induced inflammatory hyperalgesia in rats and mice. PLoS ONE. 2013;8(12):e81228.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Nicolaou A, Masoodi M, Gledhill K, Haylett A, Thody A, Tobin D, Rhodes L. The eicosanoid response to high dose UVR exposure of individuals prone and resistant to sunburn. Photochem Photobiol Sci. 2012;11:371–80.PubMedCrossRefGoogle Scholar
  67. 67.
    Yehuda S, Carasso R. Modulation of learning, pain thresholds, and thermoregulation in the rat by preparations of free purified a-linolenic and linoleic acids: determination of the optimal w3-to-w6 ratio. USA: Proc Natl Acad Sci; 1993 90.Google Scholar
  68. 68.
    Takemura N, Takahashi K, Tanaka H, Ihara Y, Ikemoto A, Fujii Y, Okuyama H. Dietary, but not topical, alpha-linolenic acid suppresses UVB-induced skin injury in hairless mice when compared with linoleic acids. Photochem Photobiol. 2002;76(6):657–63.PubMedCrossRefGoogle Scholar
  69. 69.
    Canonne J, Froidure-Nicolas S, Rivas S. Phospholipases in action during plant defense signaling. Plant Signal Behav. 2011;6(1):13–8 Epub 2011 Jan 1.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Fruhwirth G, Loidl A, Hermetter A. Oxidized phospholipids: Ffrom molecular properties to disease. doi: 10.1016/j.bbadis.2007.04.009.
  71. 71.
    Dobrian A, Lieb D, Coole B, Taylor-Fishwick D, Chakrabarti S, Nadler J. Functional and pathological roles of the 12- and 15-lipoxygenases. Prog Lipid Res. 2011;50(1):115–31.PubMedCrossRefGoogle Scholar
  72. 72.
    Lazic M, Inzaugarat M, Povero D, Zhao I, Chen M, Nalbandian M, Miller Y, Cherñavsky A, Feldstein A, Sears D. Reduced dietary omega-6 to omega-3 fatty acid ratio and 12/15-lipoxygenase deficiency are protective against chronic high fat diet-induced steatohepatitis. PLoS ONE. 2014;9(9):e107658.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Nunemaker C, Chen M, Pei H, Kimble S, Keller S, Carter J, Yang Z, Smith K, Wu R, Bevard M, Garmey J, Nadler J. 12-lipoxygenase-knockout mice are resistant to inflammatory effects of obesity induced by western diet. Am J Physiol Endocrinol Metab. 2008;295(5):E1065–75.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Rudhard Y, Sengupta Ghosh A, Lippert B, Böcker A, Pedaran M, Krämer J, Ngu H, Foreman O, Liu Y, Lewcock J. Identification of 12/15-lipoxygenase as a regulator of axon degeneration through high-content screening. J Neurosci. 2015;35(7):2927–41.PubMedCrossRefGoogle Scholar
  75. 75.
    Green-Mitchell S, Tersey T, Cole B, Ma K, Kuhn N, Cunningham T, Maybee N, Chakrabarti S, McDuffie M, Taylor-Fishwick D, Mirmira R, Nadler J, Morris M. Deletion of 12/15-lipoxygenase alters macrophage and islet function in NOD-Alox15null Mice, leading to protection against type 1 diabetes development. doi: 10.1371/journal.pone.0056763.
  76. 76.
    Caligiuri S, Love K, Winter T, Gauthier J, Taylor C, Blydt-Hansen T, Zahradka P, Aukema H. Dietary linoleic acid and α-linolenic acid differentially affect renal oxylipins and phospholipid fatty acids in diet-induced obese rats. J Nutr. 2013;143(9):1421–31.PubMedCrossRefGoogle Scholar
  77. 77.
    Belkner J, Wiesner R, Kühn H, Lankin V. The oxygenation of cholesterol esters by the reticulocyte lipoxygenase. FEBS Lett. 1991;279(1):110–4.PubMedCrossRefGoogle Scholar
  78. 78.
    Schulze-Tanzil G, De SP, Behnke B, Klingelhoefer S, Scheid A, Shakibaei M. Effects of the antirheumatic remedy hox alpha–a new stinging nettle leaf extract—on matrix metalloproteinases in human chondrocytes in vitro. Histol Histopathol. 2002;17(2):477–85.PubMedGoogle Scholar
  79. 79.
    Liu W, Wang J. Modifications of protein by polyunsaturated fatty acid ester peroxidation products. Biochim Biophys Acta. 2005;1752(1):93–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Nigam S, Honn K, Marnett L, Walden Jr. T. Eicosanoids and other bioactive lipids in cancer, inflammation and radiation injury: Proceedings of the 2nd international conference, 17–21 Sept 1991. Berlin: Springer; 2012. ISBN 1461365627. p. 27–30Google Scholar
  81. 81.
    Powers C, McLeskey S, Wellstein A. Fibroblast growth factors, their receptors and signalling. Endocr Relat Cancer. 2000;7:165–97.PubMedCrossRefGoogle Scholar
  82. 82.
    Hung N, Kim M, Sok D. Mechanisms for anti-inflammatory effects of 1-[15(S)-hydroxyeicosapentaenoyl] lysophosphatidylcholine, administered intraperitoneally, in zymosan A-induced peritonitis. Br J Pharmacol. 2011;162(5):1119–35.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Pasini AF, Stranieri C, Pasini A, Vallerio P, Mozzini C, Solani E, Cominacini M, Cominacini L, Garbin U. Lysophosphatidylcholine and carotid intima-media thickness in young smokers: a role for oxidized LDL-induced expression of PBMC lipoprotein-associated phospholipase A2? PLoS ONE. 2013;8(12):e83092.Google Scholar
  84. 84.
    Anand R, Kaithwas G. Inflammation Anti-inflammatory potential of alpha-linolenic acid mediated through selective COX inhibition: computational and experimental data. 2014;37(4):1297–306.Google Scholar
  85. 85.
    Fujimoto Y, Yonemura T, Sakuma S. Role of linoleic acid hydroperoxide preformed by cyclooxygenase-1 or -2 on the regulation of prostaglandin formation from arachidonic acid by the respective enzyme. J Clin Biochem Nutr. 2008;43(2):65–8.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Mertins A, Holvoet P. Oxidized LDL and HDL: antagonists in atherothrombosis. FASEBJ. 2001;15:2073–84.CrossRefGoogle Scholar
  87. 87.
    Ruparel S, Hargreaves K, Eskander M, Rowan S, de Almeida J, Roman L, Henry M. Oxidized linoleic acid metabolite-cytochrome P450 system (OLAM-CYP) is active in biopsy samples from patients with inflammatory dental pain. Pain. 2013;154(11):2363–71.PubMedCrossRefGoogle Scholar
  88. 88.
    Wang D, Dubois R. Epoxyeicosatrienoic acids: a double-edged sword in cardiovascular diseases and cancer. J Clin Invest. 2012;122(1):19–22.PubMedCrossRefGoogle Scholar
  89. 89.
    Tam V, Quehenberger O, Oshansky C, Suen R, Armando A, Treuting P, Thomas P, Dennis E, Aderem A. Lipidomic profiling of influenza infection identifies mediators that induce and resolve inflammation. Cell. 2013;154(1):213–27.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Williams J, Khan M, Lem N. Physiology, biochemistry and molecular biology of plant lipids. Plant Ecol. 2000;146(1):117.CrossRefGoogle Scholar
  91. 91.
    Schuchardt J, Schneider I, Willenberg I, Yang J, Hammock B, Hahn A, Schebb N. Increase of EPA-derived hydroxy, epoxy and dihydroxy fatty acid levels in human plasma after a single dose of long-chain omega-3. PUFA. 2014. doi: 10.1016/j.prostaglandins.2014.03.001.
  92. 92.
    Loscalzo J, Vita J. Nitric oxide and the cardiovascular system. Berlin: Springer; 2000. ISBN. 1592590020. p. 127–128.Google Scholar
  93. 93.
    Psychogios N, Hau D, Peng J, Guo A, Mandal R, Bouatra S, Sinelnikov I, Krishnamurthy R, Eisner R, Gautam B, Young N, Xia J, Knox C, Dong E, Huang P, Hollander Z, Pedersen T, Smith S, Bamforth F, Greiner R, McManus B, Newman J, Goodfriend T, Wishart D, Flower D. The human serum metabolome. PLoS ONE. 2011;6(2):e16957.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Smith K, Pinkerton K, Watanabe T, Pedersen T, Ma S, Hammock D. Attenuation of tobacco smoke-induced lung inflammation by treatment with a soluble epoxide hydrolase inhibitor. doi: 10.1073/pnas.0409591102.
  95. 95.
    Holman R, Johnson S, Hatch T. A case of human linolenic acid deficiency involving neurological abnormalities. Am J Clin Nutr. 1982;35(3):617–23.PubMedGoogle Scholar
  96. 96.
    Poli G, Schaur R. 4-Hydroxynonenal in the pathomechanisms of oxidative stress. IUBMB Life. 2000;50(4–5):315–21.PubMedCrossRefGoogle Scholar
  97. 97.
    Usatyuk P, Natarajan V. Hydroxyalkenals and oxidized phospholipids modulation of endothelial cytoskeleton, focal adhesion and adherens junction proteins in regulating endothelial barrier function. Microvasc Res. 2012;83(1):45–55.PubMedCrossRefGoogle Scholar
  98. 98.
    Ignarro L. Nitric oxide: biology and pathobiology. 2000; New York: Academic Press. p. 332–334Google Scholar
  99. 99.
    Schneider C, Tallman K, Porter N, Brash A. Two distinct pathways of formation of 4-hydroxynonenal.Mechanisms of nonenzymatic transformation of the 9- and 13-hydroperoxides of linoleic acid to 4-hydroxyalkenals. J Biol Chem. 2001;276(24):20831–8 Epub 2001 Mar 19.PubMedCrossRefGoogle Scholar
  100. 100.
    Annangudi S, Deng Y, Gu X, Zhang W, Crabb J, Salomon R. Low-density lipoprotein has an enormous capacity to bind (E)-4-hydroxynon-2-enal (HNE): detection and characterization of lysyl and histidyl adducts containing multiple molecules of HNE. Chem Res Toxicol. 2008;21(7):1384–95.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Echtay K, Esteves T, Pakay J, Jekabsons M, Lambert A, Portero-Otín M, Pamplona R, Vidal-Puig A, Wang S, Roebuck S, Brand M. A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J. 2003;22(16):4103–10.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Long E, Olson D, Bernlohr D. High fat diet induces changes in adipose tissue trans-4-oxo-2-nonenal and trans-4-hydroxy-2-nonenal levels in a depot-specific manner. Free Radic Biol Med. 2013;63:390–8.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Shibata T, Iio K, Kawai Y, Shibata N, Kawaguchi M, Toi S, Kobayashi M, Kobayashi M, Yamamoto K, Uchida K. Identification of a lipid peroxidation product as a potential trigger of the p53 pathway. J Biol Chem. 2006;281(2):1196–204.PubMedCrossRefGoogle Scholar
  104. 104.
    Bacot S, Bernoud-Hubac N, Baddas N, Chantegrel B, Deshayes C, Doutheau A, Lagarde M, Guichardant M. Covalent binding of hydroxy-alkenals 4-HDDE, 4-HHE, and 4-HNE to ethanolamine phospholipid subclasses. J Lipid Res. 2003;44(5):917–26.PubMedCrossRefGoogle Scholar
  105. 105.
    Tsujinaka K, Nakamura T, Maegawa H, Fujimiya M, Nishio Y, Kudo M, Kashiwagi A. Diet high in lipid hydroperoxide by vitamin E deficiency induces insulin resistance and impaired insulin secretion in normal rats. Diabetes Res Clin Pract. 2005;67(2):99–109.PubMedCrossRefGoogle Scholar
  106. 106.
    Lee J, Je J, Kim D, Chung S, Zou Y, Kim N, Ae Yoo M, Suck Baik H, Yu B, Chung H. Induction of endothelial apoptosis by 4-hydroxyhexenal. Eur J Biochem. 2004;271(7):1339–47.PubMedCrossRefGoogle Scholar
  107. 107.
    Riahi Y, Cohen G, Shamni O, Sasson S. Signaling and cytotoxic functions of 4-hydroxyalkenals. Am J Physiol Endocrinol Metab. 2010;299:E879–86.PubMedCrossRefGoogle Scholar
  108. 108.
    Trebino C, Stock J, Gibbons C, Naiman B, Wachtmann T, Umland J, Pandher K, Lapointe J, Saha S, Roach M, Carter D, Thomas N, Durtschi B, McNeish J, Hambor J, Jakobsson P, Carty T, Perez J, Audoly L. Impaired inflammatory and pain responses in mice lacking an inducible prostaglandin E synthase. Proc Natl Acad Sci USA. 2003;100(15):9044–9 Epub 2003 Jun 30.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Kawabata A. Prostaglandin E2 and pain—an update. Biol Pharm Bull. 2011;34(8):1170–3.PubMedCrossRefGoogle Scholar
  110. 110.
    Gopinath P, Wan E, Holdcroft A, Facer P, Davis J, Smith D, Bountra C, Anand P. Increased capsaicin receptor TRPV1 in skin nerve fibres and related vanilloid receptors TRPV3 and TRPV4 in keratinocytes in human breast pain. BMC Women’s Health. 2005;5:2.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Cornelli U, Belcaro G, Cesarone M, Finco A. Analysis of oxidative stress during the menstrual cycle. Reprod Biol Endocrinol. 2013;11:74.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Mabalirajan U, Rehman R, Ahmad T, Kumar S, Singh S, Leishangthem G, Aich J, Kumar M, Khanna K, Singh V, Dinda A, Biswal S, Agrawal A, Ghosh B. Linoleic acid metabolite drives severe asthma by causing airway epithelial injury. doi: 10.1038/srep01349.
  113. 113.
    Kamkin A, Lozinsky I. Mechanically gated channels and their regulation. Berlin: Springer; 2012.Google Scholar
  114. 114.
    Sissan M, Menon V, Leelamma S. Effects of low-dose oral contraceptive oestrogen and progestin on lipid peroxidation in rats. J Int Med Res. 1995;23(4):272–8.PubMedGoogle Scholar
  115. 115.
    Chen J, Kotani K. Oral contraceptive therapy increases oxidative stress in pre-menopausal women. Int J Prev Med. 2012;3(12):893–6.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Vina J, Borras C, Gomez-Cabrera M, Orr W. Part of the series: from dietary antioxidants to regulators in cellular signalling and gene expression. Role of reactive oxygen species and (phyto)oestrogens in the modulation of adaptive response to stress. Free Radic Res. 2006;40(2):111–9.PubMedCrossRefGoogle Scholar
  117. 117.
    Bellanti F, Matteo M, Rollo T, De Rosario F, Greco P, Vendemiale G, Serviddio G. Sex hormones modulate circulating antioxidant enzymes: impact of estrogen therapy. Redox Biol. 2013;19(1):340–6.CrossRefGoogle Scholar
  118. 118.
    Schneider C, Brash A. Lipoxygenase-catalyzed formation of R-configuration hydroperoxides. Prostaglandins Other Lipid Mediat. 2002;68–69:291–301.PubMedCrossRefGoogle Scholar
  119. 119.
    Fang X, Kaduce T, Spector A. 13-(S)-Hydroxyoctadecadienoic acid (13-HODE) Incorporation and conversion to novel products by endothelial cells. J. Lipid Res. 40; 1999.Google Scholar
  120. 120.
    Daret D, Blin P, Larrue J. Synthesis of hydroxy fatty acids from linoleic acid by human blood platelets. Prostaglandins. 1989;38(2):203–14.PubMedCrossRefGoogle Scholar
  121. 121.
    Schneider C, Pratt D, Porter N, Brash A. Control of oxygenation in lipoxygenase and cyclooxygenase catalysis.  10.1016/j.chembiol.2007.04.007.
  122. 122.
    Camacho M, Godessart N, Antón R, Garca M, Vila l. Interleukin-1 enhances the ability of cultured human umbilical vein endothelial cells to oxidize linoleic acid. J Biol Chem. 1995;270:17279–86.PubMedCrossRefGoogle Scholar
  123. 123.
    Zuo X, Wu Y, Morris J, Stimmel J, Leesnitzer L, Fischer S, Lippman S, Shureiqi I. Oxidative metabolism of linoleic acid modulates PPAR-beta/delta suppression of PPAR-gamma activity. Oncogene. 2006;25(8):1225–41.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Hogg H, Kalyanaraman B. Nitric oxide and lipid peroxidation. doi: 10.1016/S0005-2728(99)00027-4.
  125. 125.
    Pacher P, Beckman J, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87(1):315–424.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Freeman B, Paul Baker P, Schopfer F, Woodcock S, Napolitano A, d’Ischia M. Nitro-fatty acid formation and signaling. doi: 10.1074/jbc.R800004200.
  127. 127.
    Baker P, Lin Y, Schopfer F, Woodcock S, Groeger A, Batthyany C, Sweeney S, Long M, Iles K, Baker L, Branchaud B, Chen Y, Freeman B. Fatty acid transduction of nitric oxide signaling: multiple nitrated unsaturated fatty acid derivatives exist in human blood and urine and serve as endogenous peroxisome proliferator-activated receptor ligands. J Biol Chem. 2005;280(51):42464–75 Epub 2005 Oct 14.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Brunelli L, Yermilov V, Beckman J. Modulation of catalase peroxidatic and catalatic activity by nitric oxide. Free Radic Biol Med. 2001;30(7):709–14.PubMedCrossRefGoogle Scholar
  129. 129.
    Bentz M, Zaouter C, Shi Q, Fahmi H, Moldovan F, Fernandes J, Benderdour M. Inhibition of inducible nitric oxide synthase prevents lipid peroxidation in osteoarthritic chondrocytes. J Cell Biochem. 2012;113(7):2256–67.PubMedCrossRefGoogle Scholar
  130. 130.
    Lancaster J, Parkinson J, editors. Nitric oxide, cytochromes P450, and sexual steroid hormones. Berlin: Springer; 1997. ISBN 3662035030.Google Scholar
  131. 131.
    Chwalisz K, Garfield R. Role of nitric oxide in implantation and menstruation. Hum Reprod. 2000;15(Suppl 3):96–111.PubMedCrossRefGoogle Scholar
  132. 132.
    O’Donnell V, Freeman B. Interactions between nitric oxide and lipid oxidation pathways. Circ Res. 2001;88:12–21.PubMedCrossRefGoogle Scholar
  133. 133.
    Wang L, Gill R, Pedersen T, Higgins L, Newman J, Rutledge J. Triglyceride-rich lipoprotein lipolysis releases neutral and oxidized FFAs that induce endothelial cell inflammation. J Lipid Res. 2009;50(2):204–13.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Kraemer F, Shen W. Hormone-sensitive lipase control of intracellular tri-(di-)acylglycerol and cholesteryl ester hydrolysis. J Lipid Res. 2002;43(10):1585–94.PubMedCrossRefGoogle Scholar
  135. 135.
    Belkner J, Stender H, Holzhütter H, Holm C, Kühn H. Macrophage cholesteryl ester hydrolases and hormone-sensitive lipase prefer specifically oxidized cholesteryl esters as substrates over their non-oxidized counterparts. Biochem J. 2000;352(Pt 1):125–33.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Neuzil J, Upston J, Witting P, Scott K, Stocker R. Secretory Phospholipase A2 and lipoprotein lipase enhance 15-lipoxygenase-induced enzymic and nonenzymic lipid peroxidation in low-density lipoproteins. Biochemistry. 1998;37(25):9203–10.PubMedCrossRefGoogle Scholar
  137. 137.
    Costa L, Furlong C, editors. Paraoxonase (PON1) in health and disease: basic and clinical aspects. Berlin: Springer; 2002. p. 126Google Scholar
  138. 138.
    Piotrowski J, Shah S, Alexander J. Mature human atherosclerotic plaque contains peroxidized phosphatidylcholine as a major lipid peroxide. doi: 10.1016/0024-3205(95)02351-8.
  139. 139.
    Yoshida Y, Umeno A, Shichiri M. Lipid peroxidation biomarkers for evaluating oxidative stress and assessing antioxidant capacity in vivo. J Clin Biochem Nutr. 2013;52(1):9–16.PubMedCrossRefGoogle Scholar
  140. 140.
    Wang G, Chang C, Yanga C, Chen C. Negatively charged L5 as a naturally occurring atherogenic low-density lipoprotein. doi: 10.1016/j.biomed.2012.05.003.
  141. 141.
    Urata J, Ikeda S, Koga S, Nakata T, Yasunaga T, Sonoda K, Koide Y, Ashizawa N, Kohno S, Maemura K. Negatively charged low-density lipoprotein is associated with atherogenic risk in hypertensive patients. Heart Vessels. 2012;27(3):235–42.PubMedCrossRefGoogle Scholar
  142. 142.
    Greenberg M, Li X, Gugiu B, Gu X, Qin J, Salomon R, Hazen S. The lipid whisker model of the structure of oxidized cell membranes. J Biol Chem. 2008;283(4):2385–96 Epub 2007 Nov 28.PubMedCrossRefGoogle Scholar
  143. 143.
    Hazen S, Chisolm G. Oxidized phosphatidylcholines: pattern recognition ligands for multiple pathways of the innate immune response. doi: 10.1073/pnas.212532799.
  144. 144.
    Chen L, Liang B, Froese D, Liu S, Wong J, Tran K, Hatch G, Mymin D, Kroeger E, Man R, Choy P. Oxidative modification of low density lipoprotein in normal and hyperlipidemic patients: effect of lysophosphatidylcholine composition on vascular relaxation. J Lipid Res. 1997;38(3):546–53.PubMedGoogle Scholar
  145. 145.
    Colas R, Sassolas A, Guichardant M, Cugnet-Anceau C, Moret M, Moulin P, Lagarde M, Calzada C. LDL from obese patients with the metabolic syndrome show increased lipid peroxidation and activate platelets. Diabetologia. 2011;54(11):2931–40.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Kato Y, editor. Lipid hydroperoxide-derived modification of biomolecules. Berlin: Springer; 2013. p. 44Google Scholar
  147. 147.
    Deigner H, Hermetter A. Oxidized phospholipids: emerging lipid mediators in pathophysiology. Curr Opin Lipidol. 2008;19:289–94.PubMedCrossRefGoogle Scholar
  148. 148.
    Ashraf M, Srivastava S. Oxidized phospholipids: introduction and biological significance. doi: 10.5772/50461.
  149. 149.
    Volinsky R, Cwiklik L, Jurkiewicz P, Hof M, Jungwirth P, Kinnunen P. Oxidized phosphatidylcholines facilitate phospholipid flip-flop in liposomes. Biophys J. 2011;101(6):1376–84.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Pohl E, Voltchenko A, Rupprecht A. Flip-flop of hydroxy fatty acids across the membrane as monitored by proton-sensitive microelectrodes. Biochim Biophys Acta. 2008;1778(5):1292–7.PubMedCrossRefGoogle Scholar
  151. 151.
    Matsumoto T, Kobayashi T, Kamata K. Role of lysophosphatidylcholine (LPC) in atherosclerosis. Curr Med Chem. 2007;14(30):3209–20.PubMedCrossRefGoogle Scholar
  152. 152.
    Leitinger N, Tyner T, Oslund L, Rizza C, Subbanagounder G, Lee H, Shih P, Mackman N, Tigyi G, Territo M, Berliner J, Vora D. Structurally similar oxidized phospholipids differentially regulate endothelial binding of monocytes and neutrophils. Proc Natl Acad Sci US A. 1999;96(21):12010–5.CrossRefGoogle Scholar
  153. 153.
    McIntyre T, Zimmerman G, Prescott S. Biologically active oxidized phospholipids. doi: 10.1074/jbc.274.36.25189.
  154. 154.
    Dewailly P, Nouvelot A, Sezille G, Fruchart J, Jaillard J. Changes in fatty acid composition of cardiac mitochondrial phospholipids in rats fed rapeseed oil. Lipids. 1978;13(4):301–4.PubMedCrossRefGoogle Scholar
  155. 155.
    Cortie C, Else P. Dietary docosahexaenoic acid (22:6) incorporates into cardiolipin at the expense of linoleic acid (18:2): analysis and potential implications. Int J Mol Sci. 2012;13(11):15447–63.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Johnston P, Root B. Nerve membranes: a study of the biological and chemical aspects of neuron. London: Elsevier; 2013. p. 1483154572.Google Scholar
  157. 157.
    Wolff R. Early modification of the fatty acid composition of cardiolipins and other phospholipids in rat liver mitochondria during dietary deficiency of essential fatty acids followed by repletion. Reprod Nutr Dev. 1988;28(6A):1489–507.PubMedCrossRefGoogle Scholar
  158. 158.
    McGee C, Lieberman P, Greenwood C. Dietary fatty acid composition induces comparable changes in cardiolipin fatty acid profile of heart and brain mitochondria. Lipids. 1996;31(6):611–6.PubMedCrossRefGoogle Scholar
  159. 159.
    Liu W, Porter N, Schneider C, Brash A, Yin H. Formation of 4-hydroxynonenal from cardiolipin oxidation: intramolecular peroxyl radical addition and decomposition. Free Radic Biol Med. 2011;50(1):166–78.PubMedCrossRefGoogle Scholar
  160. 160.
    Garlid A. Mitochondrial reactive oxygen species (ROS): which ROS is responsible for cardioprotective signaling? A thesis Portland State University; 2014.Google Scholar
  161. 161.
    Tyurina Y, Poloyac S, Tyurin V, Kapralov A, Jiang J, Anthonymuthu T, Kapralova V, Vikulina A, Jung M, Epperly M, Mohammadyani D, Klein-Seetharaman J, Jackson T, Kochanek P, Pitt B, Greenberger J, Vladimirov Y, Bayır H, Kagan V. A mitochondrial pathway for biosynthesis of lipid mediators. Nat Chem. 2014;6(6):542–52.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Adilakshmi T, Lease R, Woodson S. Hydroxyl radical footprinting in vivo: mapping macromolecular structures with synchrotron radiation. doi: 10.1093/nar/gkl291.
  163. 163.
    Cai H. Hydrogen peroxide regulation of endothelial function: Origins, mechanisms, and consequences. Cardiovasc Res. 2005;68:26–36.PubMedCrossRefGoogle Scholar
  164. 164.
    Natarajan V, Parinandi N, editors. Mitochondrial function in lung health and disease. Respiratory medicine. Berlin: Springer. I SBN 978-1-4939-0829-5. Vol. 15, p. 60.Google Scholar
  165. 165.
    Tyurina Y, Tyurin V, Kapralova V, Wasserloos K, Mosher M, Epperly M, Greenberger J, Pitt B, Kagan V. Oxidative lipidomics of γ-radiation-induced lung injury: mass spectrometric characterization of cardiolipin and phosphatidylserine peroxidation. Radiat Res. 2011;175(5):610–21.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Gonzalvez F, D’Aurelio M, Boutant M, Moustapha A, Puech JP, Landes T, Arnauné-Pelloquin L, Vial G, Taleux N, Slomianny C, Wanders R, Houtkooper R, Bellenguer P, Møller I, Gottlieb E, Vaz F, Manfredi G, Petit P. Barth syndrome: cellular compensation of mitochondrial dysfunction and apoptosis inhibition due to changes in cardiolipin remodeling linked to tafazzin (TAZ) gene mutation. Biochim Biophys Acta. 2013;1832(8):1194–206.PubMedCrossRefGoogle Scholar
  167. 167.
    Ji J, Baart S, Vikulina A, Clark R, Anthonymuthu T, Tyurin V, Du L, St Croix C, Tyurina Y, Lewis J, Skoda E, Kline A, Kochanek P, Wipf P, Kagan V, Bayır H. Deciphering of mitochondrial cardiolipin oxidative signaling in cerebral ischemia-reperfusion. J Cereb Blood Flow Metab. 2015;35(2):319–28.PubMedCrossRefGoogle Scholar
  168. 168.
    Belikova N, Vladimirov Y, Osipov A, Kapralov A, Tyurin V, Potapovich M, Basova L, Peterson J, Kurnikov I, Kagan V. Peroxidase activity and structural transitions of cytochrome c bound to cardiolipin-containing membranes. Biochemistry. 2006;45(15):4998–5009.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Basova L, Kurnikov I, Wang L, Ritov V, Belikova N, Vlasova I, Pacheco A, Winnica D, Peterson J, Bayir H, Waldeck D, Kagan V. Cardiolipin switch in mitochondria: shutting off the reduction of cytochrome c and turning on the peroxidase activity. Biochemistry. 2007;46(11):3423–34.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Kiebish M, Yang K, Liu X, Mancuso D, Guan S, Zhao Z, Sims H, Cerqua R, Cade W, Han X, Gross R. Dysfunctional cardiac mitochondrial bioenergetic, lipidomic, and signaling in a murine model of Barth syndrome. J Lipid Res. 2013;54(5):1312–25.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Sears D, Miles P, Chapman J, Ofrecio J, Almazan F, Thapar D, Miller Y. 12/15-lipoxygenase is required for the early onset of high fat diet-induced adipose tissue inflammation and insulin resistance in mice. PLoS ONE. 2009;4(9):e7250.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Chan R, Di Paolo G. Knockout punch: cardiolipin oxidation in trauma. Nat Neurosci. 2012;15(10):1325–7.PubMedCrossRefGoogle Scholar
  173. 173.
    Ochoa J, Quiles J, Huertas J, Mataix J. Coenzyme Q 10 protects from aging-related oxidative stress and improves mitochondrial function in heart of rats fed a polyunsaturated fatty acid (PUFA)-rich diet. J Gerontol A Biol Sci Med Sci. 2005;60(8):970–5.PubMedCrossRefGoogle Scholar
  174. 174.
    Allegra M, Gentile C, Tesoriere L, Livrea M. Protective effect of melatonin against cytotoxic actions of malondialdehyde: an in vitro study on human erythrocytes. J Pineal Res. 2002;32(3):187–93.PubMedCrossRefGoogle Scholar
  175. 175.
    Martín M, Macías M, Escames G, León J, Acuña-Castroviejo D. Melatonin but not vitamins C and E maintains glutathione homeostasis in t-butyl hydroperoxide-induced mitochondrial oxidative stress. FASEB J. 2000;14(12):1677–9.PubMedGoogle Scholar
  176. 176.
    Petrosillo G, De Benedictis V, Ruggiero F, Paradies G. Decline in cytochrome c oxidase activity in rat-brain mitochondria with aging. Role of peroxidized cardiolipin and beneficial effect of melatonin. J Bioenerg Biomembr. 2013;45(5):431–40.PubMedCrossRefGoogle Scholar
  177. 177.
    Hui Y, Nip W, Rogers R, editors. Meat science and applications. New York: CRC Press; 2001. ISBN 0203908082. p. 74.Google Scholar
  178. 178.
    Arnoldi A. Thermal processing and food quality: analysis and control. University of Milan. p. 152. ftp://feq.ufu.br/Luis/Books/E-Books/Food/Thermal_technologies_in_food_processing/3558x_08.pdf.
  179. 179.
    Coutron-Gambottia C, Gandemerb G. Lipolysis and oxidation in subcutaneous adipose tissue during dry-cured ham processing. doi: 10.1016/S0308-8146(98)00079-X.
  180. 180.
    De Bry L. Anthropological implications of the maillard reaction: an insight. 28–36. doi: 10.1533/9781845698393.1.28.
  181. 181.
    Hudson B. Biochemistry of food proteins. Berlin: Springer; 2013. ISBN.1468498959. p. 129Google Scholar
  182. 182.
    Birlouez-Aragon J, Pischetsrieder M, Leclere J, Morales F, Hasenkopf K, Kientsch-Engel R, Ducauze C, Rutledge D. Assessment of protein glycation markers in infant formulas. Food Chem. 2004;87:253–9.CrossRefGoogle Scholar
  183. 183.
    Guerra-Hernández E, Leon C, Corzo N, García-Villanova B, Romera J. Chemical changes in powdered infant formulas during storage. Int J Dairy Technol. 2002;55(4)Google Scholar
  184. 184.
    Michalak J, Kuncewicz A, Gujska E. Monitoring selected quality indicators of powdered infant milk formulas. Pol J Food Nutr. Sci. 2006;15(56), 131–135.Google Scholar
  185. 185.
    Baéz R, Rojas G, Sandoval-Guillén J, Valdivia-López A. Effect of storage temperature on the chemical stability of enteral formula. Adv J Food Sci Technol. 2012;4(5):235–42.Google Scholar
  186. 186.
    Ookawara T, Kawamura N, Kitagawa Y, Taniguchi N. Site-specific and random fragmentation of Cu, Zn-superoxide dismutase by glycation reaction. Implication of reactive oxygen species. J Biol Chem. 1992;267(26):18505–10.PubMedGoogle Scholar
  187. 187.
    Michalski M, Calzada C, Makino A, Michaud S, Guichardant M. Oxidation products of polyunsaturated fatty acids in infant formulas compared to human milk—a preliminary study. doi: 10.1002/mnfr.200700451.
  188. 188.
    Martysiak-Żurowska D, Stołyhwo A. Content of malondialdehyde (mda) in infant formulae and follow-on formulae. Pol J Food Nutr Sci. 2006;15/56:323–8.Google Scholar
  189. 189.
    Pottenger Jr. F. Pottenger’s cats: a study in nutrition price. 2nd ed. Pottenger Nutrition; 1995.Google Scholar
  190. 190.
    McCarrison R. Nutrition and national health. The Cantor Lectures, The Royal Society of Arts 1936. Faber and Faber. http://journeytoforever.org/farm_library/McC/McCToC.html.
  191. 191.
    Price W. Nutrition and physical degeneration. 8th ed. Price Pottenger Nutrition.Google Scholar
  192. 192.
    Madhavi D, Deshpande S, Salunkhe D, editors. Food antioxidants: technological: toxicological and health perspectives. In: Jadhav S. Nimbalkar S. Kulkarni A. Madhavi D, editors. Lipid oxidation in biological systems. New York: CRC Press; 1995. ISBN.082479351X.Google Scholar
  193. 193.
    Bucala R, Makita Z, Koschinsky T, Cerami A, Vlassara H. Lipid advanced glycosylation: pathway for lipid oxidation in vivo. Proc Natl Acad Sci USA. 1993;90(14):6434–8.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Lee T, Cerami A, Bucla R. Glucose-mediated DNA damage and mutations; In vitro and in vivo. Maillard reactions in chemistry, food and health. London: Woodhead Publishing Series in Food Science, Technology and Nutrition. ISBN: 978-1-85573-792-1.Google Scholar
  195. 195.
    Arnold L, Wang Z. The HbA1c and all-cause mortality relationship in patients with type 2 diabetes is J-shaped: a meta-analysis of observational studies. Rev Diabet Stud. 2014;11(2):138–52.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Reiser K, Amigable M, Last J. Nonenzymatic glycation of type I collagen. The effects of aging on preferential glycation sites. J Biol Chem. 1992;267(34):24207–16.PubMedGoogle Scholar
  197. 197.
    Labuza T, Monnier V, Baynes J, O’Brien J. Maillard reactions in chemistry, food and health. London: Woodhead Publishing Series in Food Science, Technology and Nutrition. ISBN: 978-1-85573-792-1.Google Scholar
  198. 198.
    Scheffer P, Teerlink T, Heine R. Clinical significance of the physicochemical properties of LDL in type 2 diabetes. Diabetologia. 2005;48:808–16.PubMedCrossRefGoogle Scholar
  199. 199.
    Chao P, Chao C, Lin F, Huang C. Oxidized frying oil up-regulates hepatic acyl-CoA oxidase and cytochrome P450 4 A1 genes in rats and activates PPARalpha. J Nutr. 2001;131(12):3166–74.PubMedGoogle Scholar
  200. 200.
    Dobarganes M. Formation of volatiles and short-chain bound compounds during the frying process. http://lipidlibrary.aocs.org/frying/c-volatile/index.htm.
  201. 201.
    Dobarganes M, Hoe E, Min D. Chemistry of deep-fat frying oils. The AOCS Lipid Library.Google Scholar
  202. 202.
    Shamberger R, Shamberger B, Willis C. Malonaldehyde content of food. J Nutr. 1977;107(8):1404–9.PubMedGoogle Scholar
  203. 203.
    Obrien J, Morrissey P, Flynn A. Alterations of mineral metabolism and secondary pathology in rats fed maillard reaction products. The Maillard reaction in food processing, human nutrition and physiology. Berlin: Springer Science; 1990.Google Scholar
  204. 204.
    Liu D, Ma F. Soybean Phospholipids. Krezhova D, editors. Recent trends for enhancing the diversity and quality of soybean products. InTech; 2011. ISBN 978-953-307-533-4.Google Scholar
  205. 205.
    Aparicio-Ruiz R, Harwood J, editors. Handbook of olive oil: analysis and properties. 2nd ed. Berlin: Springer; 2013. ISBN 146147776X.Google Scholar
  206. 206.
    Boskou D, Blekas G, Tsimidou M. Chemistry, properties, health. effects olive oil. Composition, Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki.Google Scholar
  207. 207.
    Djilas S, Lj. Milić B. Naturally occurring phenolic compounds as inhibitors of free radical formation in the maillard reaction. doi: 10.1533/9781845698393.2.75.
  208. 208.
    Tsunoda M, Sakaue T, Naito S, Sunami T, Abe N, Ueno Y, Matsuda A, Takénaka A. Insights into the structures of DNA damaged by hydroxyl radical: crystal structures of DNA duplexes containing 5-formyluracil.  10.4061/2010/107289.
  209. 209.
    Blair I. DNA Adducts with lipid peroxidation products. doi  10.1074/jbc.R700051200.
  210. 210.
    Niki E. Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Radic Biol Med. 2014;66:3–12.PubMedCrossRefGoogle Scholar
  211. 211.
    Duthie S, Gardner P, Morrice P, Wood S, Pirie L, Bestwick C, Milne L, Duthie G. DNA stability and lipid peroxidation in vitamin E-deficient rats in vivo and colon cells in vitro–modulation by the dietary anthocyanin, cyanidin-3-glycoside. Eur J Nutr. 2005;44(4):195–203 Epub 2004 Jul 9.PubMedCrossRefGoogle Scholar
  212. 212.
    Nakayama T. Suppression of hydroperoxide-induced cytotoxicity by polyphenols. Cancer Res. 1994;54(Supp.), 1991s–1993s.Google Scholar
  213. 213.
    Trevithick-Sutton C, Foote C, Collins M, Trevithick J. The retinal carotenoids zeaxanthin and lutein scavenge superoxide and hydroxyl radicals: a chemiluminescence and ESR study. Mol Vis. 2006;30(12):1127–35.Google Scholar
  214. 214.
    Lipinski B. Hydroxyl radical and its scavengers in health and disease.  10.1155/2011/809696.
  215. 215.
    Packer O. Lipid-soluble antioxidants: biochemistry and clinical applications. Birkhäuser; 2013. ISBN 3034874340. p. 193Google Scholar
  216. 216.
    Jain S, Micinski D, Huning L, Kahlon G, Bass P, Levine S. Vitamin D and L-cysteine levels correlate positively with GSH and negatively with insulin resistance levels in the blood of type 2 diabetic patients. Eur J Clin Nutr. 2014;68:1148–53.PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Narayan M, Welker E, Wedemeyer W, Scheraga H. Oxidative folding of proteins. Acc Chem Res. 2000;33(11):805–12.PubMedCrossRefGoogle Scholar
  218. 218.
    Sevanian A, editor. Lipid peroxidation in biological systems. The American Oil Chemists Society, 1 Jan 1988.Google Scholar
  219. 219.
    Madhavi D, Deshpande S, Salunkhe D. Food antioxidants: technological: toxicological and health perspectives. In: Nutritional and health aspects of food. New York: CRC Press; 1995. ISBN 082479351X.Google Scholar
  220. 220.
    Schnurr K, Belkner J, Ursini F, Schewe T, Kühn H. The selenoenzyme phospholipid hydroperoxide glutathione peroxidase controls the activity of the 15-lipoxygenase with complex substrates and preserves the specificity of the oxygenation products. J Biol Chem. 1996;271(9):4653–8.PubMedCrossRefGoogle Scholar
  221. 221.
    Bao Y, Jemth P, Mannervik B, Williamson G. Reduction of thymine hydroperoxide by phospholipid hydroperoxide glutathione peroxidase and glutathione transferases. doi: 10.1016/S0014-5793(97)00591-7.
  222. 222.
    Brosnan J, Brosnan M. The sulfur-containing amino acids: an overview. J Nutr. 2006;136(6):1636S–40S.PubMedGoogle Scholar
  223. 223.
    Zhang W, Xiao S, Ahn D. Protein oxidation: basic principles and implications for meat quality. Crit Rev Food Sci Nutr. 2013;53(11):1191–201.PubMedCrossRefGoogle Scholar
  224. 224.
    Perrone C, Mattocks D, Plummer J, Chittur S, Mohney R, Vignola K, Orentreich D, Orentreich N. Genomic and metabolic responses to methionine-restricted and methionine-restricted, cysteine-supplemented diets in Fischer 344 rat inguinal adipose tissue, liver and quadriceps muscle. J Nutrigenet Nutrigenomics. 2012;5:132–57.PubMedCrossRefGoogle Scholar
  225. 225.
    Soladoye O, Júarez M, Aalhus J, Shand P, Estevez M. Protein oxidation in processed meat: mechanisms and potential implications on human health. doi: 10.1111/1541-4337.12127.
  226. 226.
    Sekhar R, Patel S, Guthikonda A, Reid M, Balasubramanyam A, Taffet G, Jahoor F. Deficient synthesis of glutathione underlies oxidative stress in aging and can be corrected by dietary cysteine and glycine supplementation. Am J Clin Nutr. 2011;94(3):847–53.PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Sekhar R, McKay S, Patel S, Guthikonda A, Reddy V, Balasubramanyam A, Jahoor F. Glutathione synthesis is diminished in patients with uncontrolled diabetes and restored by dietary supplementation with cysteine and glycine. Diabetes Care. 2011;34(1):162–7.PubMedCrossRefGoogle Scholar
  228. 228.
    Jones D, Coates R, Flagg E, Eley J, Block G, Greenberg R, Gunter E, Jackson B. Glutathione in foods listed in the National Cancer Institute’s Health Habits and History Food Frequency Questionnaire. Nutr Cancer. 1992;17:57–75.PubMedCrossRefGoogle Scholar
  229. 229.
    Ghosh S, Kewalramani G, Yuen G, Pulinilkunnil T, An D, Innis S, Allard M, Wambolt R, Qi D, Abrahani A, Rodrigues B. Induction of mitochondrial nitrative damage and cardiac dysfunction by chronic provision of dietary omega-6 polyunsaturated fatty acids. Free Radic Biol Med. 2006;41(9):1413.PubMedCrossRefGoogle Scholar
  230. 230.
    Yang T. Poovaiah B. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin.  10.1073/pnas.052564899.
  231. 231.
    Meilhac O, Zhou M, Santanam N, Parthasarathy S. Lipid peroxides induce expression of catalase in cultured vascular cells. J Lipid Res. 2000;41:1205–13.PubMedGoogle Scholar
  232. 232.
    Khoo N, Hebbar S, Zhao W, Moore S, Domann F, Robbins M. Differential activation of catalase expression and activity by PPAR agonists: implications for astrocyte protection in anti-glioma therapy. Redox Biol. 2013;26(1):70–9.CrossRefGoogle Scholar
  233. 233.
    Kim Y, Kim S, Han S. Nitric oxide converts catalase compounds II and III to ferricatalase. Bull Korean Chem Soc. 2002;23(11).Google Scholar
  234. 234.
    Sigfrid L, Cunningham J, Beeharry N, Lortz S, Tiedge M, Lenzen S, Carlsson C, Green I. Cytokines and nitric oxide inhibit the enzyme activity of catalase but not its protein or mRNA expression in insulin-producing cells. J Mol Endocrinol. 2003;31(3):509–18.PubMedCrossRefGoogle Scholar
  235. 235.
    Loughran P, Stolz D, Vodovotz Y, Watkins S, Simmons R, Billiar T. Monomeric inducible nitric oxide synthase localizes to peroxisomes in hepatocytes. www.pnas.org/cgi/doi/10.1073/pnas.0503926102.
  236. 236.
    Eguchi M, Sannes P, Spicer S. Peroxisomes of rat peritoneal macrophages during phagocytosis. Am J Pathol. 1979;95(2):281–94.PubMedPubMedCentralGoogle Scholar
  237. 237.
    Cernuda-Morollón E, Rodríguez-Pascual F, Klatt P, Lamas S, Pérez-Sala D. PPAR agonists amplify iNOS expression while inhibiting NF-κB: implications for mesangial cell activation by cytokines. J Am Soc Nephrol. 2002;13(9):2223–31.PubMedCrossRefGoogle Scholar
  238. 238.
    Milligan S, Owens M, Grisham M. Augmentation of cytokine-induced nitric oxide synthesis by hydrogen peroxide. Am J Physiol. 1996;271(1 Pt 1):L114–20.PubMedGoogle Scholar
  239. 239.
    Förstermann U, Sessa W. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829–37.PubMedCrossRefGoogle Scholar
  240. 240.
    Andrew P, Mayer B. Enzymatic function of nitric oxide synthases. doi: 10.1016/S0008-6363(99)00115-7.
  241. 241.
    Balligand J, Ungureanu-Longrois D, Simmons W, Pimental D, Malinski T, Kapturczak M, Taha Z, Lowenstein C, Davidoff A, Kelly R, et al. Cytokine-inducible nitric oxide synthase (iNOS) expression in cardiac myocytes. Characterization and regulation of iNOS expression and detection of iNOS activity in single cardiac myocytes in vitro. J Biol Chem. 1994;269(44):27580–8.PubMedGoogle Scholar
  242. 242.
    Mohazzab-H K, Fayngersh R, Wolin M. Nitric oxide inhibits pulmonary artery catalase and H2O2-associated relaxation. Am J Physiol. 1996;271(5 Pt 2):H1900–6.PubMedGoogle Scholar
  243. 243.
    Calnek D, Mazzella L, Roser S, Roman J, Hart C. Peroxisome proliferator-activated receptor gamma ligands increase release of nitric oxide from endothelial cells. Arterioscler Thromb Vasc Biol. 2003;23(1):52–7.PubMedCrossRefGoogle Scholar
  244. 244.
    Leifeld L, Fielenbach M, Dumoulin L, Speidel N, Sauerbruch T, Spengler U. Inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) expression in fulminant hepatic failure. J Hepatol. 2002;37(5):613–9.PubMedCrossRefGoogle Scholar
  245. 245.
    Yoshioka Y, Kitao T, Kishino T, Yamamuro A, Maeda S. Nitric oxide protects macrophages from hydrogen peroxide-induced apoptosis by inducing the formation of catalase. J Immunol. 2006;176(8):4675–81.PubMedCrossRefGoogle Scholar
  246. 246.
    Brown G. Reversible binding and inhibition of catalase by nitric oxide. Eur J Biochem. 1995;232(1):188–91.PubMedCrossRefGoogle Scholar
  247. 247.
    Fels A, Nathan C, Cohn Z. Hydrogen peroxide release by alveolar macrophages from sarcoid patients and by alveolar macrophages from normals after exposure to recombinant interferons alpha A, beta, and gamma and 1,25-dihydroxyvitamin D3. J Clin Invest. 1987;80(2):381–6.PubMedPubMedCentralCrossRefGoogle Scholar
  248. 248.
    Nakagawara A, Nathan C, Cohn Z. Hydrogen peroxide metabolism in human monocytes during differentiation in vitro. J Clin Invest. 1981;68(5):1243–52.Google Scholar
  249. 249.
    Morgan D. The cell cycle: p 250 principles of control. Oxford: Oxford University Press; 2006.Google Scholar
  250. 250.
    Kostourou V, Cartwright J, Johnstone A, Boult J, Cullis E, Whitley G, Robinson S. The role of tumour-derived iNOS in tumour progression and angiogenesis. Br J Cancer. 2011;104(1):83–90.PubMedCrossRefGoogle Scholar
  251. 251.
    Seyfried T, Flores R, Poff A, D’Agostino D. Cancer as a metabolic disease: implications for novel therapeutics. Carcinogenesis. 2014;35(3):515–27.PubMedCrossRefGoogle Scholar
  252. 252.
    Kanno T, Nakamura K, Ikai H, Kikuchi K, Sasaki K, Niwano Y. Literature review of the role of hydroxyl radicals in chemically-induced mutagenicity and carcinogenicity for the risk assessment of a disinfection system utilizing photolysis of hydrogen peroxide. J Clin Biochem Nutr. 2012;51(1):9–14.PubMedPubMedCentralCrossRefGoogle Scholar
  253. 253.
    van Gisbergen M, Voets A, Starmans M, de Coo I, Yadak R, Hoffmann R, Boutros P, Smeets H, Dubois L, Lambin P. How do changes in the mtDNA and mitochondrial dysfunction influence cancer and cancer therapy? Challenges, opportunities and models. Mutat Res Rev Mutat Res. 2015;764:16–30.PubMedCrossRefGoogle Scholar
  254. 254.
    Hu W, Feng Z, Eveleigh J, Iyer G, Pan J, Amin S, Chung F, Tang M. The major lipid peroxidation product, trans-4-hydroxy-2-nonenal, preferentially forms DNA adducts at codon 249 of human p53 gene, a unique mutational hotspot in hepatocellular carcinoma. Carcinogenesis. 2002;23(11):1781–9.PubMedCrossRefGoogle Scholar
  255. 255.
    Urmimala R, Jamboor V. Effect of 4-hydroxynonenal on migration and invasion enhancer protein 1 (mien1) in colorectal cancer. http://digitalcommons.hsc.unt.edu/rad/RAD14/Cancer/13.
  256. 256.
    Zhong H, Yina H. Role of lipid peroxidation derived 4-hydroxynonenal (4-HNE) in cancer: focusing on mitochondria. doi: 10.1016/j.redox.2014.12.011.
  257. 257.
    Glasgow W, Afshari C, Barrett J, Eling T. Modulation of the epidermal growth factor mitogenic response by metabolites of linoleic and arachidonic acid in Syrian hamster embryo fibroblasts. Differential effects in tumor suppressor gene (+) and (−) phenotypes. J Biol Chem. 1992;267(15):10771–9.PubMedGoogle Scholar
  258. 258.
    Blask D, Dauchy R, Sauer LA. Putting cancer to sleep at night: the neuroendocrine/circadian melatonin signal. Endocrine. 2005;27(2):179–88.PubMedCrossRefGoogle Scholar
  259. 259.
    Sauer L, Dauchy R, Blask D. Dietary linoleic acid intake controls the arterial blood plasma concentration and the rates of growth and linoleic acid uptake and metabolism in hepatoma 7288CTC in Buffalo rats. J Nutr. 1997;127(7):1412–21.PubMedGoogle Scholar
  260. 260.
    Sauer L, Dauchy R, Blask D, Armstrong B, Scalici S. 13-Hydroxyoctadecadienoic acid is the mitogenic signal for linoleic acid-dependent growth in rat hepatoma 7288CTC in vivo. Cancer Res. 1999;59(18):4688–92.PubMedGoogle Scholar
  261. 261.
    Ayala A, Muñoz M, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal.  10.1155/2014/360438.
  262. 262.
    Gönenç A, Ozkan Y, Torun M, Simşek B. Plasma malondialdehyde (MDA) levels in breast and lung cancer patients. J Clin Pharm Ther. 2001;26(2):141–4.PubMedCrossRefGoogle Scholar
  263. 263.
    Chole R, Patil R, Basak A, Palandurkar K, Bhowate R. Estimation of serum malondialdehyde in oral cancer and precancer and its association with healthy individuals, gender, alcohol, and tobacco abuse. J Cancer Res Ther. 2010;6(4):487–91.PubMedCrossRefGoogle Scholar
  264. 264.
    Salzman R, Pácal L, Tomandl J, Kanková K, Tóthová E, Gál B, Kostrica R, Salzman P. Elevated malondialdehyde correlates with the extent of primary tumor and predicts poor prognosis of oropharyngeal cancer. Anticancer Res. 2009;29(10):4227–31.PubMedGoogle Scholar
  265. 265.
    CDC Carcinogenicity of Acetaldehyde and Malonaldehyde, and Mutagenicity of Related Low-Molecular-Weight Aldehydes. DHHS (NIOSH) Publication Number 91–112.Google Scholar
  266. 266.
    Macotpet A, Suksawat F, Sukon P, Pimpakdee K, Pattarapanwichien E, Tangrassameeprasert R, Boonsiri P. Oxidative stress in cancer-bearing dogs assessed by measuring serum malondialdehyde. BMC Vet Res. 2013;9:101.PubMedPubMedCentralCrossRefGoogle Scholar
  267. 267.
    Didžiapetrienė J, Bublevič J, Smailytė G, Kazbarienė B, Stukas R. Significance of blood serum catalase activity and malondialdehyde level for survival prognosis of ovarian cancer patients. Medicina (Kaunas). 2014;50(4):204–8.CrossRefGoogle Scholar
  268. 268.
    Almushatat A, Talwar D, McArdle P, Williamson C, Sattar N, O’Reilly D, Underwood M, McMillan D. Vitamin antioxidants, lipid peroxidation and the systemic inflammatory response in patients with prostate cancer. Int J Cancer. 2006;118(4):1051–3.PubMedCrossRefGoogle Scholar
  269. 269.
    Khaidakov M, Mitra S, Kang B, Wang X, Kadlubar S, Novelli G, Raj V, Winters M, Carter W, Mehta J. Oxidized LDL Receptor 1 (OLR1) as a possible link between obesity, dyslipidemia and cancer. doi: 10.1371/journal.pone.0020277.
  270. 270.
    González-Chavarría I, Cerro R, Parra N, Sandoval F, Zuñiga F, Omazábal V, Lamperti L, Jiménez S, Fernandez E, Gutiérrez N, Rodriguez F, Onate S, Sánchez O, Vera J, Toledo J. Lectin-like oxidized LDL receptor-1 is an enhancer of tumor angiogenesis in human prostate cancer cells. PLoS ONE. 2014;9(8):e106219.PubMedPubMedCentralCrossRefGoogle Scholar
  271. 271.
    Ip C, Carter C, Ip M. Requirement of essential fatty acid for mammary tumorigenesis in the rat. Cancer Res. 1985;45(5):1997–2001.PubMedGoogle Scholar
  272. 272.
    Klein V1, Chajès V, Germain E, Schulgen G, Pinault M, Malvy D, Lefrancq T, Fignon A, Le Floch O, Lhuillery C, Bougnoux P. Low alpha-linolenic acid content of adipose breast tissue is associated with an increased risk of breast cancer. Eur J Cancer. 2000;36(3):335–340.Google Scholar
  273. 273.
    Bougnoux P, Koscielny S, Chajès V, Descamps P, Couet C, Calais G. Alpha-Linolenic acid content of adipose breast tissue: a host determinant of the risk of early metastasis in breast cancer. Br J Cancer. 1994;70(2):330–4.PubMedPubMedCentralCrossRefGoogle Scholar
  274. 274.
    Carayol M, Grosclaude P, Delpierre C. Prospective studies of dietary alpha-linolenic acid intake and prostate cancer risk: a meta-analysis. Cancer Causes Control. 2010;21(3):347–55.PubMedCrossRefGoogle Scholar
  275. 275.
    Demark-Wahnefried W, Polascik T, George S, Switzer B, Madden J, Ruffin M 4th, Snyder D, Owzar K, Hars V, Albala D, Walther P, Robertson C, Moul J, Dunn B, Brenner D, Minasian L, Stella P, Vollmer R. Flaxseed supplementation (not dietary fat restriction) reduces prostate cancer proliferation rates in men presurgery. Cancer Epidemiol Biomarkers Prev. 2008;17(12):3577–87.PubMedPubMedCentralCrossRefGoogle Scholar
  276. 276.
    Mannar V, Bellamy C. Vitamin and mineral deficiency a global progress report. Unicef.Google Scholar
  277. 277.
    Zimmermann M, Andersson M. Prevalence of iodine deficiency in Europe in 2010. Annales d’Endocrinologie. 2011;72:164–6.PubMedCrossRefGoogle Scholar
  278. 278.
    Thomas D. A study on the mineral depletion of the foods available to us as a nation over the period 1940 to 1991. Nutr Health. 2003;17(2):85–115.PubMedCrossRefGoogle Scholar
  279. 279.
    Trowell H, Burkitt D, editors. Western diseases their emergence and prevention. Edward Arnold; 1981. ISSN 0-7131-4373-8.Google Scholar
  280. 280.
    Price W. Nutritional and physical degeneration. 8th ed. Price Pottinger Foundation; 2009.Google Scholar
  281. 281.
    Connor W, Cerqueira M, Connor R, Wallace R, Malinow M, Casdorph H. The plasma lipids, lipoproteins, and diet of the Tarahumara Indians of Mexico. Am J Clin Nutr. 1978;31(7):1131–42.Google Scholar
  282. 282.
    Zacho J, Tybjaerg-Hansen A, Nordestgaard B. C-reactive protein and all-cause mortality—the Copenhagen City Heart Study. Eur Heart J. 2010;31(13):1624–32.PubMedCrossRefGoogle Scholar
  283. 283.
    Barr E, Cameron A, Balkau B, Zimmet P, Welborn T, Tonkin A, Shaw J. HOMA insulin sensitivity index and the risk of all-cause mortality and cardiovascular disease events in the general population: the Australian diabetes, obesity and lifestyle study (AusDiab) study. Diabetologia. 2010;53(1):79–88.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.McCarrison SocietyInstitute of Chartered AccountantsSt Lawrence, JerseyUK

Personalised recommendations