Advertisement

Omega-3 Fatty Acids and Mitochondrial Functions

  • Surendra S. Katyare
  • A. V. Mali
Chapter

Abstract

Mitochondrial disease (MD) generally refers to a group of disorders that are attributable to malfunctioning mitochondria that are unable to efficiently or effectively generate energy. Some of the most profound effects of MD are seen in the brain and the muscles, while other commonly affected organs include heart, liver, nervous system, eyes, ears, and kidneys. One of the promising nutritional components which may play crucial role in the management of MD is omega-3 polyunsaturated fatty acids (n-3 PUFAs). Animal studies concluded that the omega-3 PUFAs, i.e., ALA and especially EPA and DHA, have some positive effects on functional parameters of mitochondria in various mitochondrial dysfunction-related pathological conditions such as neurodegenerative diseases: Parkinson’s disease, Alzheimer’s disease, aging, cardiovascular diseases, diabetes, and ROS-induced damages. Supplementation with n-3 PUFAs from fish oil (FO) has shown mitochondrial neuroprotective effect in animal models of Parkinson’s disease and aging while clinical trials with patients have shown equivocal results. n-3 PUFAs protected cardiac mitochondria from Ca2+-induced swelling in isoproterenol-treated rats. In animal studies, DHA supplementation brought about significant changes in mitochondria membrane phospholipid components. Similar pattern was noted in cardiac mitochondria from diabetic animal model.

Keywords

Omega-3 and mitochondrial function Omega-3 and mitochondrial phospholipids Mitochondria, omega-3 and energy coupling Omega-3, mitochondria, and neurologic disorders Omega-3 and cardiac mitochondria Omega-3 and diabetic mitochondria 

References

  1. 1.
    Vitols E, Linnane AW. Studies on the oxidative metabolism of Saccharomyces cerevisiae II. Morphology and Oxidative Phosphorylation Capacity of Mitochondria and Derived Particles from Baker’s Yeast. J Biophy Biochem Cytol. 1961;9(3):701–10.CrossRefGoogle Scholar
  2. 2.
    Bellamy D. The endogenous citric acid-cycle intermediates and amino acids of mitochondria. Biochem J. 1962;82(1):218–24.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Campbell NA, Williamson B, Heyden RJ. Biology: Exploring Life: Boston. Massachusetts: Pearson Prentice Hall; 2006. p. 492.Google Scholar
  4. 4.
    McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Cur Biol. 2006;16(14):551–60.CrossRefGoogle Scholar
  5. 5.
    Naviaux RK. The spectrum of mitochondrial disease. A primary care physicians guide. 1997;3–10.Google Scholar
  6. 6.
    Poyton RO, McEwen JE. Crosstalk between nuclear and mitochondrial genomes. Annu Rev Biochem. 1996;65:563–607.CrossRefPubMedGoogle Scholar
  7. 7.
    DiMauro S, Schon EA. Mitochondrial respiratory-chain diseases. New Engl J Med. 2003;348(26):2656–68.CrossRefGoogle Scholar
  8. 8.
    DiMauro S, Andreu AL, Musumeci O, Bonilla E. Diseases of oxidative phosphorylation due to mtDNA mutations. Semin Neurol. 2001;21(3):251–60.CrossRefPubMedGoogle Scholar
  9. 9.
    Sirrs S, O’Riley M, Lorne Clarke MDCM, AM FCCMG. Primer on mitochondrial disease: Biochemistry, genetics, and epidemiology. Depression. 2011;500:70s.Google Scholar
  10. 10.
    McInnes J. Mitochondrial-associated metabolic disorders: foundations, pathologies and recent progress. Nutr Metab. 2013;10(1):1–13.CrossRefGoogle Scholar
  11. 11.
    Gvozdjáková A, Pella D, Kucharská J, Otsuka K, Singh RB. Omega-3-PUFA, Omega-6-PUFA and Mitochondria. Mitochondrial Med. 2008;343–56.Google Scholar
  12. 12.
    Eckert GP, Lipka U, Muller WE. Omega-3 fatty acids in neurodegenerative diseases: focus on mitochondria. Prostaglandins Leukot Essent Fatty Acids. 2013;88(1):105–14.CrossRefPubMedGoogle Scholar
  13. 13.
    Eckert A, et al. Mitochondrial dysfunction—a pharmacological target in Alzheimer’s disease. Mol Neurobiol. 2012;46(1):136–50.CrossRefPubMedGoogle Scholar
  14. 14.
    Kidd PM. Neurodegeneration from mitochondrial insufficiency: nutrients, stem cells, growth factors, and prospects for brain rebuilding using integrative management. Alter Med Rev. 2005;10(4):268.Google Scholar
  15. 15.
    Galli C, White HB Jr, Paoletti R. Lipid alterations and their reversion in the central nervous system of growing rats deficient in essential fatty acids. Lipids. 1971;6(6):378–87.CrossRefPubMedGoogle Scholar
  16. 16.
    Bourre, JM. Effects of nutrients (in food) on the structure and function of the nervous system: update on dietary requirements for brain. Part 2: macronutrients. J Nutr Health Aging. 2006;10(5), 386.Google Scholar
  17. 17.
    Afshordel S, Hagl S, Werner D, Röhner N, Kögel D, Bazan NG, Eckert GP. Omega-3 polyunsaturated fatty acids improve mitochondrial dysfunction in brain aging–Impact of Bcl-2 and NPD-1 like metabolites. Prostaglandins Leukot Essent Fatty Acids. 2015;92:23–31.CrossRefPubMedGoogle Scholar
  18. 18.
    Lee LK, Shahar S, Rajab N, Yusoff NAM, Jamal RA, Then SM. The role of long chain omega-3 polyunsaturated fatty acids in reducing lipid peroxidation among elderly patients with mild cognitive impairment: a case-control study. J Nutr Biochem. 2013;24(5):803–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Dyall SC, Michael-Titus AT. Neurological benefits of omega-3 fatty acids. NeuroMol Med. 2008;10(4):219–35.CrossRefGoogle Scholar
  20. 20.
    Pagano G, Aiello Talamanca A, Castello G, Cordero MD, d’Ischia M, Gadaleta MN, et al. Oxidative stress and mitochondrial dysfunction across broad-ranging pathologies: toward mitochondria-targeted clinical strategies. Oxidative Med Cell Longev. 2014; 2014.Google Scholar
  21. 21.
    Di Lisa F, Kaludercic N, Carpi A, Menabò R, Giorgio M. Mitochondria and vascular pathology. Pharmacol Reports. 2009;61(1):123–30.CrossRefGoogle Scholar
  22. 22.
    Perrotta I, Perrotta E, Sesti S, Cassese M, Mazzulla S. MnSOD expression in human atherosclerotic plaques: an immunohistochemical and ultrastructural study. Cardiovas Pathol. 2013;22(6):428–37.CrossRefGoogle Scholar
  23. 23.
    Sobenin IA, Sazonova MA, Postnov AY, Bobryshev YV, Orekhov AN. Changes of mitochondria in atherosclerosis: possible determinant in the pathogenesis of the disease. Atherosclerosis. 2013;227(2):283–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Guzik B, Sagan A, Ludew D, Mrowiecki W, Chwała M, Bujak-Gizycka B, et al. Mechanisms of oxidative stress in human aortic aneurysms—association with clinical risk factors for atherosclerosis and disease severity. Inter J Cardiol. 2013;168(3):2389–96.CrossRefGoogle Scholar
  25. 25.
    Stanley WC, Hoppel CL. Mitochondrial dysfunction in heart failure: potential for therapeutic interventions? Cardiovas Res. 2000;45(4):805–6.CrossRefGoogle Scholar
  26. 26.
    Jarreta D, Orús J, Barrientos A, Miró O, Roig E, Heras M, et al. Mitochondrial function in heart muscle from patients with idiopathic dilated cardiomyopathy. Cardiovas Res. 2000;45(4):860–5.CrossRefGoogle Scholar
  27. 27.
    McInnes J. Mitochondrial-associated metabolic disorders: foundations, pathologies and recent progress. Nutr and Metab. 2013;10(1):1–13.CrossRefGoogle Scholar
  28. 28.
    Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, et al. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 2005;1(6):401–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Murray AJ, Edwards LM, Clarke K. Mitochondria and heart failure. Curr Opin Clin Nutr Metab Care. 2007;10(6):704–11.CrossRefPubMedGoogle Scholar
  30. 30.
    Panasiuk OS, Shysh AM, Moĭbenko OO. The influence of dietary omega-3 polyunsaturated fatty acids on functional parameters of myocardial mitochondria during isoproterenol-induced heart injury. FiziolZh (Kiev, Ukraine: 1994). 2013;60(1):18–24.Google Scholar
  31. 31.
    Panasiuk O, Shysh A, Bondarenko A, Moibenko O. Omega-3 polyunsaturated fatty acid-enriched diet differentially protects two subpopulations of myocardial mitochondria against Ca2 + -induced injury. Expt Clin Cardiol. 2013;18(1):e60.Google Scholar
  32. 32.
    Pepe S. Effect of dietary polyunsaturated fatty acids on age-related changes in cardiac mitochondrial membranes. Expt Gerontol. 2005;40(5):369–76.CrossRefGoogle Scholar
  33. 33.
    Dabkowski ER, O’Connell KA, Xu W, Ribeiro Jr RF, Hecker PA, Shekar KC, et al. Docosahexaenoic acid supplementation alters key properties of cardiac mitochondria and modestly attenuates development of left ventricular dysfunction in pressure overload-induced heart failure. Cardiovas Drugs Ther. 2013; 27(6):499–510.Google Scholar
  34. 34.
    Galvao TF, Khairallah RJ, Dabkowski ER, Brown BH, Hecker PA, O’Connell KA, et al. Marine n3 polyunsaturated fatty acids enhance resistance to mitochondrial permeability transition in heart failure but do not improve survival. Physiol-Heart Circulatory Physiol. 2013;304(1):H12–21.CrossRefGoogle Scholar
  35. 35.
    Khairallah RJ, Sparagna GC, Khanna N, O’Shea KM, Hecker PA, Kristian T, et al. Dietary supplementation with docosahexaenoic acid, but not eicosapentaenoic acid, dramatically alters cardiac mitochondrial phospholipid fatty acid composition and prevents permeability transition. Biochima et Biophysica Acta-Bioenergetics. 2010; 1797(8):1555–62.Google Scholar
  36. 36.
    Stanley WC, Khairallah RJ, Dabkowski ER. Update on lipids and mitochondrial function: impact of dietary n-3 polyunsaturated fatty acids. Curr Opin Clin Nutr Metabol care. 2012; 15(2):122.Google Scholar
  37. 37.
    Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nat Rev Endocrinol. 2012;8(4):228–36.CrossRefGoogle Scholar
  38. 38.
    Khan S, Raghuram GV, Bhargava A, Pathak N, Chandra DH, Jain SK, et al. Role and clinical significance of lymphocyte mitochondrial dysfunction in type 2 diabetes mellitus. Translational Res. 2011;158(6):344–59.CrossRefGoogle Scholar
  39. 39.
    Michikawa Y, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G. Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science. 1999;286(5440):774–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 2003;300(5622):1140–2.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Leloup C, Tourrel-Cuzin C, Magnan C, Karaca M, Castel J, Carneiro L, et al. Mitochondrial reactive oxygen species are obligatory signals for glucose-induced insulin secretion. Diabetes. 2009;58(3):673–81.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Zhukovs’ka AS, ShyshAM Moĭbenko OO. Study of the impact of omega-3 PUFA on fatty acid composition of heart, respiration and swelling of mitochondria of the heart in diabetes. FiziolZh. 2012;58(2):16–26.Google Scholar
  43. 43.
    Taneda S, Honda K, Tomidokoro K, Uto K, Nitta K, Oda H. Eicosapentaenoic acid restores diabetic tubular injury through regulating oxidative stress and mitochondrial apoptosis. Am J Physiol Renal Physiol. 2010;299(6):F1451–61.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Center for Innovation in Nutrition, Health and DiseasesIRSHA, Bharati Vidyapeeth Deemed University (BVDU)PuneIndia

Personalised recommendations