Balancing Omega-6: Omega-3 Ratios in Oilseeds

  • Tejas P. Chirmade
  • Smrati Sanghi
  • Ashwini V. Rajwade
  • Vidya S. Gupta
  • Narendra Y. KadooEmail author


Fats and oils are the essential constituents of human diet, and nearly 80 % of these are obtained from plants. The predominant fatty acids present in plant oils are saturated and unsaturated compounds with straight aliphatic chains of carbon atoms and a single carboxyl group. Depending on the position of the first double bond from the methyl (ω) end in the fatty acyl chain, the mono- and polyunsaturated fatty acids can be denoted as ω-9, ω-6, or ω-3. Excess consumption of ω-6 fatty acids has greatly and unfavorably increased the ω-6: ω-3 ratio up to 25:1, which is associated with prevalence of many negative health effects, including cardiovascular diseases, cancer, osteoporosis, and inflammatory and autoimmune diseases. Because the ω-3 fatty acids (FAs) are the precursors for synthesis of anti-inflammatory eicosanoids, balancing the ω-6: ω-3 ratio is vital. The easiest approach to achieve this would be consumption of oils rich in ω-3 FAs, such as linseed oil. Alternatively, the fatty acid biosynthetic pathway in plants producing high ω-6 FAs can be altered by biotechnological means, so that they produce higher proportion of ω-3 FAs. This chapter describes the current knowledge of the fatty acid biosynthesis pathway in plants, including the genes involved, their temporal and spatial expression patterns, and various fluxes that they drive. The choice of oilseeds, genes, and promoters for modulating the fatty acid biosynthesis flux from ω-6 to ω-3 fatty acids is also dealt with. The potential hurdles in achieving these and possible solutions have also been described.


Omega-6 Omega-3 PUFA LC-PUFA Fatty acid biosynthesis pathway EPA DHA 



TPC acknowledges the Senior Research Fellowship from the Council of Scientific and Industrial Research (CSIR), India, and SS acknowledges the INSPIRE Fellowship from the Department of Science and Technology (DST), India. Financial support in the form of DBT Bio-CARe grant (GAP 308426) to AVR, and CSIR (CSC 0112) and ICAR (GAP 311926) grants to CSIR-NCL are gratefully acknowledged. The authors thank Reema Deshmukh, Sneha Petkar, and Nidhi Purohit for their help during preparation of this chapter.


  1. 1.
    Chu WS, Sheldon VL. Soybean oil quality as influenced by planting site and variety. J Am Oil Chem Soc. 1979;56(2):71–3.CrossRefGoogle Scholar
  2. 2.
    Subar AF, Krebs-Smith SM, Cook A, Kahle LL. Dietary sources of nutrients among US adults, 1989 to 1991. J Am Diet Assoc. 1998;98(5):537–47.PubMedCrossRefGoogle Scholar
  3. 3.
    Voelker T, Kinney AT. Variations in the biosynthesis of seed-storage lipids. Annu Rev Plant Phys. 2001;52:335–61.CrossRefGoogle Scholar
  4. 4.
    Kostik V, Memeti S, Bauer B. Fatty acid composition of edible oils and fats. J Hygienic Eng Des. 2012;4:112–6.Google Scholar
  5. 5.
    Zambiazi RC, Przybylski R, Zambiazi MW, Mendonça CB. Fatty acid composition of vegetable oils and fats. BCEPPA, Curitiba. 2007;25:111–20.Google Scholar
  6. 6.
    Baud S, Lepiniec L. Regulation of de novo fatty acid synthesis in maturing oilseeds of Arabidopsis. Plant Physiol Biochem: PPB/Societe francaise de physiologie vegetale. 2009;47(6):448–55.CrossRefGoogle Scholar
  7. 7.
    Vogel G, Browse J. Preparation of radioactively labeled synthetic sn-1,2-diacylglycerols for studies of lipid metabolism. Anal Biochem. 1995;224(1):61–7 (Epub 1995/01/01).PubMedCrossRefGoogle Scholar
  8. 8.
    Gunstone FD. Soybeans pace boost in oilseed production. Inform. 2001;11:1287–9.Google Scholar
  9. 9.
    Damude HG, Kinney AJ. Enhancing plant seed oils for human nutrition. Plant Physiol. 2008;147(3):962–8.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Simopoulos AP. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother. 2002;56(8):365–79.PubMedCrossRefGoogle Scholar
  11. 11.
    Simopoulos AP. Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed Pharmacother. 2006;60(9):502–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Simopoulos AP. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med. 2008;233(6):674–88.CrossRefGoogle Scholar
  13. 13.
    Patterson E, Wall R, Fitzgerald GF, Ross RP, Stanton C. Health implications of high dietary omega-6 polyunsaturated fatty acids. J Nutr Metab. 2012;2012:539426 Epub 2012/05/10.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Gomezdumm INTD, Brenner RR. Oxidative desaturation of alpha-linolenic, linoleic, and stearic acids by human liver-microsomes. Lipids. 1975;10(6):315–7.CrossRefGoogle Scholar
  15. 15.
    Horrobin DF. Postviral fatigue syndrome, viral-infections in atopic eczema, and essential fatty-acids. Med Hypotheses. 1990;32(3):211–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Eaton SB, Konner M. Paleolithic nutrition—a consideration of its nature and current implications. New Engl J Med. 1985;312(5):283–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Simopoulos AP. Evolutionary aspects of diet: fatty acids, insulin resistance and obesity. In: VanItallie T, Simopoulos A, editors. Obesity: new directions in assessment and management. Philadelphia: Charles Press; 1995. p. 241–61.Google Scholar
  18. 18.
    Leaf A, Weber PC. A new era for science in nutrition. Am J Clin Nutr. 1987;45(5):1048–53.PubMedGoogle Scholar
  19. 19.
    Simopoulos AP. Omega-3-fatty-acids in health and disease and in growth and development. Am J Clin Nutr. 1991;54(3):438–63.PubMedGoogle Scholar
  20. 20.
    Mozaffarian D. Does alpha-linolenic acid intake reduce the risk of coronary heart disease? A review of the evidence. Altern Ther Health M. 2005;11(3):24–30.Google Scholar
  21. 21.
    Mori TA. Omega-3 fatty acids and hypertension in humans. Clin Exp Pharmacol P. 2006;33(9):842–846.Google Scholar
  22. 22.
    Anonymous. Nutritional profile of no. 1 Canada Western flaxseed and of yellow flaxseed samples. In: Commission, CG, editor. Winnipeg, MB2001.Google Scholar
  23. 23.
    Postbeittenmiller D, Jaworski JG, Ohlrogge JB. In vivo pools of free and acylated acyl carrier proteins in spinach. Evidence for sites of regulation of fatty acid biosynthesis. J Biol Chem. 1991;266(3):1858–65 Epub 1991/01/25.Google Scholar
  24. 24.
    Postbeittenmiller D, Roughan G, Ohlrogge JB. Regulation of plant fatty-acid biosynthesis - analysis of acyl-coenzyme a and acyl-acyl carrier protein substrate pools in spinach and pea-chloroplasts. Plant Physiol. 1992;100(2):923–30.CrossRefGoogle Scholar
  25. 25.
    Weaire PJ, Kekwick RGO. Fractionation of fatty-acid synthetase activities of avocado mesocarp plastids. Biochem J. 1975;146(2):439–45.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Roughan PG, Holland R, Slack CR, Mudd JB. Acetate is the preferred substrate for long-chain fatty-acid synthesis in isolated spinach-chloroplasts. Biochem J. 1979;184(3):565–9.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Qi QG, Kleppingersparace KF, Sparace SA. The utilization of glycolytic-intermediates as precursors for fatty-acid biosynthesis by pea root plastids. Plant Physiol. 1995;107(2):413–9.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Kuhn DN, Knauf M, Stumpf PK. Subcellular localization of acetyl-CoA synthetase in leaf protoplasts of Spinacia oleracea. Arch Biochem Biophys. 1981;209(2):441–50.PubMedCrossRefGoogle Scholar
  29. 29.
    Treede HJ, Heise KP. Purification of the chloroplast pyruvate-dehydrogenase complex from spinach and maize mesophyll. Z Naturforsch C. 1986;41(11–12):1011–7.Google Scholar
  30. 30.
    Zeiher CA, Randall DD. Spinach leaf acetyl-coenzyme-a synthetase—purification and characterization. Plant Physiol. 1991;96(2):382–9.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Wood C, Masterson C, Thomas D, Tobin A. Plant organelles. Cambridge: Cambridge University Press; 1992.Google Scholar
  32. 32.
    Rangasamy D, Ratledge C. Compartmentation of ATP: citrate lyase in plants. Plant Physiol. 2000;122(4):1225–30.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Lonien J, Schwender J. Analysis of metabolic flux phenotypes for two Arabidopsis mutants with severe impairment in seed storage lipid synthesis. Plant Physiol. 2009;151(3):1617–34.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    O’Grady J, Schwender J, Shachar-Hill Y, Morgan JA. Metabolic cartography: experimental quantification of metabolic fluxes from isotopic labelling studies. J Exp Bot. 2012;63(6):2293–308.PubMedCrossRefGoogle Scholar
  35. 35.
    Smith RG, Gauthier DA, Dennis DT, Turpin DH. Malate-dependent and pyruvate-dependent fatty-acid synthesis in leukoplastids from developing castor endosperm. Plant Physiol. 1992;98(4):1233–8.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Eastmond PJ, Rawsthorne S. Coordinate changes in carbon partitioning and plastidial metabolism during the development of oilseed rape embryo. Plant Physiol. 2000;122(3):767–74.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Slabas AR, Fawcett T. The biochemistry and molecular-biology of plant lipid biosynthesis. Plant Mol Biol. 1992;19(1):169–91.PubMedCrossRefGoogle Scholar
  38. 38.
    Flugge UI, Hausler RE, Ludewig F, Gierth M. The role of transporters in supplying energy to plant plastids. J Exp Bot. 2011;62(7):2381–92.PubMedCrossRefGoogle Scholar
  39. 39.
    Bowsher CG, Boulton EL, Rose JKC, Nayagam S, Emes MJ. Reductant for glutamate synthase is generated by the oxidative pentose-phosphate pathway in nonphotosynthetic root plastids. Plant J. 1992;2(6):893–8.CrossRefGoogle Scholar
  40. 40.
    Neuhaus HE, Thom E, Mohlmann T, Steup M, Kampfenkel K. Characterization of a novel eukaryotic ATP/ADP translocator located in the plastid envelope of Arabidopsis thaliana L. Plant J. 1997;11(1):73–82.PubMedCrossRefGoogle Scholar
  41. 41.
    Kammerer B, Fischer K, Hilpert B, et al. Molecular characterization of a carbon transporter in plastids from heterotrophic tissues: the glucose 6-phosphate phosphate antiporter. Plant Cell. 1998;10(1):105–17.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Harwood JL. Fatty-acid metabolism. Annu Rev Plant Phys. 1988;39:101–38.CrossRefGoogle Scholar
  43. 43.
    Brown AP, Affleck V, Fawcett T, Slabas AR. Tandem affinity purification tagging of fatty acid biosynthetic enzymes in Synechocystis sp PCC6803 and Arabidopsis thaliana. J Exp Bot. 2006;57(7):1563–71.PubMedCrossRefGoogle Scholar
  44. 44.
    Ohlrogge J, Browse J. Lipid biosynthesis. Plant Cell. 1995;7(7):957–70.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Shimakata T, Stumpf PK. The purification and function of acetyl coenzyme-a—acyl carrier protein transacylase. J Biol Chem. 1983;258(6):3592–8.PubMedGoogle Scholar
  46. 46.
    White SW, Zheng J, Zhang YM, Rock CO. The structural biology of type II fatty acid biosynthesis. Annu Rev Biochem. 2005;74:791–831.PubMedCrossRefGoogle Scholar
  47. 47.
    Jaworski JG, Clough RC, Barnum SR. A cerulenin insensitive short chain 3-ketoacyl-acyl carrier protein synthase in Spinacia oleracea leaves. Plant Physiol. 1989;90(1):41–4.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Li-Beisson Y, Shorrosh B, Beisson F et al. Acyl-lipid metabolism. Arabidopsis Book/Am Soc Plant Biologists. 2013;11:e0161. Epub 2013/03/19.Google Scholar
  49. 49.
    Sanchez-Garcia A, Moreno-Perez AJ, Muro-Pastor AM, et al. Acyl-ACP thioesterases from castor (Ricinus communis L.): an enzymatic system appropriate for high rates of oil synthesis and accumulation. Phytochemistry. 2010;71(8–9):860–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Shanklin J, Cahoon EB. Desaturation and related modifications of fatty acids. Annu Rev Plant Phys. 1998;49:611–41.CrossRefGoogle Scholar
  51. 51.
    Sperling P, Ternes P, Zank TK, Heinz E. The evolution of desaturases. Prostag Leukotr Essent. 2003;68(2):73–95.CrossRefGoogle Scholar
  52. 52.
    Los DA, Murata N. Structure and expression of fatty acid desaturases. BBA-Lipid Lipid Met. 1998;1394(1):3–15.CrossRefGoogle Scholar
  53. 53.
    Fulco AJ. Metabolic alterations of fatty acids. Annu Rev Biochem. 1974;43:215–41.PubMedCrossRefGoogle Scholar
  54. 54.
    Heinz E. Biosynthesis of polyunsaturated fatty acids. In: Moore JTS, editor. Lipid metabolism in plants. Boca Raton, FL: CRC Press; 1993. p. 33–90.Google Scholar
  55. 55.
    Bates PD, Browse J. The significance of different diacylgycerol synthesis pathways on plant oil composition and bioengineering. Front Plant Sci. 2012;3.Google Scholar
  56. 56.
    Bates PD, Stymne S, Ohlrogge J. Biochemical pathways in seed oil synthesis. Curr Opin Plant Biol. 2013;16(3):358–64.PubMedCrossRefGoogle Scholar
  57. 57.
    Chapman KD, Ohlrogge JB. Compartmentation of triacylglycerol accumulation in plants. J Biol Chem. 2012;287(4):2288–94.PubMedCrossRefGoogle Scholar
  58. 58.
    Lu C, Xin Z, Ren Z, Miquel M. An enzyme regulating triacylglycerol composition is encoded by the ROD1 gene of Arabidopsis. Proc Natl Acad Sci. 2009;106(44):18837–42.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Sriram G, Fulton DB, Iyer VV, et al. Quantification of compartmented metabolic fluxes in developing soybean embryos by employing Biosynthetic ally directed fractional C-13 labeling, [C-13, H-1] two-dimensional nuclear magnetic resonance, and comprehensive isotopomer balancing. Plant Physiol. 2004;136(2):3043–57.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Napier JA, Stobart AK, Shewry PR. The structure and biogenesis of plant oil bodies: the role of the ER membrane and the oleosin class of proteins. Plant Mol Biol. 1996;31(5):945–56.PubMedCrossRefGoogle Scholar
  61. 61.
    Li Y, Beisson F, Pollard M, Ohlrogge J. Oil content of Arabidopsis seeds: the influence of seed anatomy, light and plant-to-plant variation. Phytochemistry. 2006;67(9):904–15.PubMedCrossRefGoogle Scholar
  62. 62.
    Mansfield SG, Briarty LG. Cotyledon cell-development in Arabidopsis thaliana during reserve deposition. Can J Bot. 1992;70(1):151–64.CrossRefGoogle Scholar
  63. 63.
    Penfield S, Rylott EL, Gilday AD, et al. Reserve mobilization in the Arabidopsis endosperm fuels hypocotyl elongation in the dark, is independent of abscisic acid, and requires PHOSPHOENOLPYRUVATE CARBOXYKINASE1. Plant Cell. 2004;16(10):2705–18.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Bewley JD. Seed germination and dormancy. Plant Cell. 1997;9(7):1055–66.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Goldberg RB, de Paiva G, Yadegari R. Plant embryogenesis: zygote to seed. Science. 1994;266(5185):605–14.PubMedCrossRefGoogle Scholar
  66. 66.
    Vicente-Carbajosa J, Carbonero P. Seed maturation: developing an intrusive phase to accomplish a quiescent state. Int J Dev Biol. 2005;49(5–6):645–51.PubMedCrossRefGoogle Scholar
  67. 67.
    Baud S, Boutin JP, Miquel M, Lepiniec L, Rochat C. An integrated overview of seed development in Arabidopsis thaliana ecotype WS. Plant Physiol Biochem. 2002;40(2):151–60.CrossRefGoogle Scholar
  68. 68.
    Murphy DJ, Cummins I. Biosynthesis of seed storage products during embryogenesis in rapeseed, Brassica napus. J Plant Physiol. 1989;135(1):63–9.CrossRefGoogle Scholar
  69. 69.
    Yazdisamadi B, Rinne RW, Seif RD. Components of developing soybean seeds—oil, protein, sugars, starch, organic-acids, and amino-acids. Agron J. 1977;69(3):481–6.CrossRefGoogle Scholar
  70. 70.
    Baud S, Graham IA. A spatiotemporal analysis of enzymatic activities associated with carbon metabolism in wild-type and mutant embryos of Arabidopsis using in situ histochemistry. Plant J. 2006;46(1):155–69.PubMedCrossRefGoogle Scholar
  71. 71.
    O’Hara P, Slabas AR, Fawcett T. Fatty acid and lipid biosynthetic genes are expressed at constant molar ratios but different absolute levels during embryogenesis. Plant Physiol. 2002;129(1):310–20.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Ruuska SA, Girke T, Benning C, Ohlrogge JB. Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell. 2002;14(6):1191–206.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Niu Y, Wu GZ, Ye R, et al. Global analysis of gene expression profiles in Brassica napus developing seeds reveals a conserved lipid metabolism regulation with Arabidopsis thaliana. Mol Plant. 2009;2(5):1107–22.PubMedCrossRefGoogle Scholar
  74. 74.
    Venglat P, Xiang DQ, Qiu SQ et al. Gene expression analysis of flax seed development. BMC Plant Biol. 2011;11.Google Scholar
  75. 75.
    Rajwade AV, Kadoo NY, Borikar SP, et al. Differential transcriptional activity of SAD, FAD2 and FAD3 desaturase genes in developing seeds of linseed contributes to varietal variation in alpha-linolenic acid content. Phytochemistry. 2014;98:41–53.PubMedCrossRefGoogle Scholar
  76. 76.
    Damude HG, Zhang H, Farrall L, et al. Identification of bifunctional delta12/omega3 fatty acid desaturases for improving the ratio of omega3 to omega6 fatty acids in microbes and plants. Proc Natl Acad Sci USA. 2006;103(25):9446–51 Epub 2006/06/10.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Venegas-Calerón M, Sayanova O, Napier JA. An alternative to fish oils: metabolic engineering of oil-seed crops to produce omega-3 long chain polyunsaturated fatty acids. Prog Lipid Res. 2010;49(2):108–19.PubMedCrossRefGoogle Scholar
  78. 78.
    Uauy R, Peirano P, Hoffman D, et al. Role of essential fatty acids in the function of the developing nervous system. Lipids. 1996;31:S167–76.PubMedCrossRefGoogle Scholar
  79. 79.
    Graham I, Cirpus P, Rein D, Napier J. The use of very long chain polyunsaturated fatty acids to ameliorate metabolic syndrome: transgenic plants as an alternative sustainable source to fish oils. Nutr Bull. 2004;29(3):228–33.CrossRefGoogle Scholar
  80. 80.
    Simopoulos AP. Essential fatty acids in health and chronic disease. Am J Clin Nutr. 1999;70(3):560s–9s.PubMedGoogle Scholar
  81. 81.
    Connor WE. Importance of n-3 fatty acids in health and disease. Am J Clin Nutr. 2000;71(1):171s–5s.PubMedGoogle Scholar
  82. 82.
    Huang YS, Pereira SL, Leonard AE. Enzymes for transgenic biosynthesis of long-chain polyunsaturated fatty acids. Biochimie. 2004;86(11):793–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Napier JA, Graham IA. Tailoring plant lipid composition: designer oilseeds come of age. Curr Opin Plant Biol. 2010;13(3):330–7 Epub 2010/02/27.PubMedCrossRefGoogle Scholar
  84. 84.
    Sayanova O, Smith MA, Lapinskas P, et al. Expression of a borage desaturase cDNA containing an N-terminal cytochrome b(5) domain results in the accumulation of high levels of Delta(6)-desaturated fatty acids in transgenic tobacco. Proc Natl Acad Sci USA. 1997;94(8):4211–6.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Nakamura MT, Nara TY. Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu Rev Nutr. 2004;24:345–76 Epub 2004/06/11.PubMedCrossRefGoogle Scholar
  86. 86.
    Soderberg M, Edlund C, Kristensson K, Dallner G. Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease. Lipids. 1991;26(6):421–5 Epub 1991/06/01.PubMedCrossRefGoogle Scholar
  87. 87.
    Hibbeln JR, Nieminen LRG, Blasbalg TL, Riggs JA, Lands WEM. Healthy intakes of n-3 and n-6 fatty acids: estimations considering worldwide diversity. Am J Clin Nutr. 2006;83(6):1483s–93s.PubMedGoogle Scholar
  88. 88.
    Haslam RP, Ruiz-Lopez N, Eastmond P, et al. The modification of plant oil composition via metabolic engineering-better nutrition by design. Plant Biotechnol J. 2013;11(2):157–68.PubMedCrossRefGoogle Scholar
  89. 89.
    Napier JA. The production of unusual fatty acids in transgenic plants. Annu Rev Plant Biol. 2007;58:295–319.PubMedCrossRefGoogle Scholar
  90. 90.
    Wu GH, Truksa M, Datla N, et al. Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants. Nat Biotechnol. 2005;23(8):1013–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Napier JA, Sayanova O, Stobart AK, Shewry PR. A new class of cytochrome b(5) fusion proteins. Biochem J. 1997;328:717–8.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Fehling E, Lessire R, Cassagne C, Mukherjee KD. Solubilization and partial purification of constituents of acyl-coa-elongase from Lunaria annua. Biochim Biophys Acta. 1992;1126(1):88–94.PubMedCrossRefGoogle Scholar
  93. 93.
    Oh CS, Toke DA, Mandala S, Martin CE. ELO2 and ELO3, homologues of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation. J Biol Chem. 1997;272(28):17376–84.PubMedCrossRefGoogle Scholar
  94. 94.
    James DW, Lim E, Keller J, et al. Directed tagging of the Arabidopsis fatty-acid elongation-1 (fae1) gene with the maize transposon activator. Plant Cell. 1995;7(3):309–19.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Millar AA, Kunst L. Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. Plant J. 1997;12(1):121–31.PubMedCrossRefGoogle Scholar
  96. 96.
    Parker-Barnes JM, Das T, Bobik E, et al. Identification and characterization of an enzyme involved in the elongation of n-6 and n-3 polyunsaturated fatty acids. Proc Natl Acad Sci USA. 2000;97(15):8284–9.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Beaudoin F, Michaelson LV, Hey SJ, et al. Heterologous reconstitution in yeast of the polyunsaturated fatty acid biosynthetic pathway. Proc Natl Acad Sci USA. 2000;97(12):6421–6.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Stahl U, Stalberg K, Stymne S, Ronne H. A family of eukaryotic lysophospholipid acyltransferases with broad specificity. FEBS Lett. 2008;582(2):305–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Sprecher H, Chen Q, Yin FQ. Regulation of the biosynthesis of 22: 5n-6 and 22: 6n-3: a complex intracellular process. Lipids. 1999;34(1):S153–6.PubMedCrossRefGoogle Scholar
  100. 100.
    Burdge GC. Metabolism of alpha-linolenic acid in humans. Prostag Leukotr Essent. 2006;75(3):161–8.CrossRefGoogle Scholar
  101. 101.
    Lee JD, Bilyeu KD, Shannon JG. Genetics and breeding for modified fatty acid profile in soybean seed oil. J Crop Sci Biotechnol. 2007;10(4):201–10.Google Scholar
  102. 102.
    Petrie JR, Shrestha P, Zhou X-R, et al. Metabolic engineering plant seeds with fish oil-like levels of DHA. PLoS ONE. 2012;7(11):e49165.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Ruiz-Lopez N, Haslam RP, Usher SL, Napier JA, Sayanova O. Reconstitution of EPA and DHA biosynthesis in Arabidopsis: iterative metabolic engineering for the synthesis of n − 3 LC-PUFAs in transgenic plants. Metab Eng. 2013;17:30–41.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Kinney AJ, Cahoon EB, Damude HG et al. Production of very long chain polyunsaturated fatty acids in oilseed plants. US Patent 20,040,172,682; 2004.Google Scholar
  105. 105.
    Abbadi A, Domergue F, Bauer J, et al. Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell Online. 2004;16(10):2734–48.CrossRefGoogle Scholar
  106. 106.
    Ruiz-Lopez N, Haslam RP, Napier JA, Sayanova O. Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop. Plant J. 2014;77(2):198–208.PubMedCrossRefGoogle Scholar
  107. 107.
    Chen R, Matsui K, Ogawa M, et al. Expression of Delta 6, Delta 5 desaturase and GLELO elongase genes from Mortierella alpina for production of arachidonic acid in soybean [Glycine max (L.) Merrill] seeds. Plant Sci. 2006;170(2):399–406.CrossRefGoogle Scholar
  108. 108.
    Sorensen BM, Furukawa-Stoffer TL, Marshall KS, et al. Storage lipid accumulation and acyltransferase action in developing flaxseed. Lipids. 2005;40(10):1043–9.PubMedCrossRefGoogle Scholar
  109. 109.
    Drexler HH, Scheffler JA, Heinz E. Evaluation of putative seed-specific promoters for Linum usitatissimum. Mol Breeding. 2003;11(2):149–58.CrossRefGoogle Scholar
  110. 110.
    Jain RK, Thompson RG, Taylor DC, et al. Isolation and characterization of two promoters from linseed for genetic engineering. Crop Sci. 1999;39(6):1696–701.CrossRefGoogle Scholar
  111. 111.
    Truksa M, MacKenzie SL, Qiu X. Molecular analysis of flax 2S storage protein conlinin and seed specific activity of its promoter. Plant Physiol Biochem. 2003;41(2):141–7.CrossRefGoogle Scholar
  112. 112.
    Nakanishi H, Shindou H, Hishikawa D, et al. Cloning and characterization of mouse lung-type acyl-CoA: lysophosphatidylcholine acyltransferase 1 (LPCAT1)—expression in alveolar type II cells and possible involvement in surfactant production. J Biol Chem. 2006;281(29):20140–7.PubMedCrossRefGoogle Scholar
  113. 113.
    Chen XN, Hyatt BA, Mucenski ML, Mason RJ, Shannon JM. Identification and characterization of a lysophosphatidylcholine acyltransferase in alveolar type II cells. Proc Natl Acad Sci USA. 2006;103(31):11724–9.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Hoffmann M, Wagner M, Abbadi A, Fulda M, Feussner I. Metabolic engineering of omega 3-very long chain polyunsaturated fatty acid production by an exclusively acyl-CoA-dependent pathway. J Biol Chem. 2008;283(33):22352–62.PubMedCrossRefGoogle Scholar
  115. 115.
    Domergue F, Abbadi A, Heinz E. Relief for fish stocks: oceanic fatty acids in transgenic oilseeds. Trends Plant Sci. 2005;10(3):112–6 Epub 2005/03/08.PubMedCrossRefGoogle Scholar
  116. 116.
    Hastings N, Agaba M, Tocher DR, et al. A vertebrate fatty acid desaturase with Delta 5 and Delta 6 activities. Proc Natl Acad Sci USA. 2001;98(25):14304–9.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Beaudoin F, Napier JA. Biosynthesis and compartmentation of triacylglycerol in higher plants. Lipid metabolism and membrane biogenesis. Berlin: Springer; 2004. p. 267–87.Google Scholar
  118. 118.
    Dahlqvist A, Stahl U, Lenman M, et al. Phospholipid: diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci USA. 2000;97(12):6487–92.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    White PJ. Fatty acids in oilseeds (vegetable oils). In: Chow, CK, editor. Fatty acids in foods and their health implications. 3rd ed. CRC Press; 2007. pp. 227–62.Google Scholar
  120. 120.
    Anonymous. Fats and oils. In: Agency FS, editor. McCance & Widdowson’s the composition of foods: Royal Society of Chemistry; 1991.Google Scholar
  121. 121.
    Cordain L. Vegetable oil fatty acid composition. Colorado, USA: The Paleo Diet; 2015 [cited 2015 Feb 15]; Available from:
  122. 122.
    Girke T, Schmidt H, Zahringer U, Reski R, Heinz E. Identification of a novel Delta 6-acyl-group desaturase by targeted gene disruption in Physcomitrella patens. Plant J. 1998;15(1):39–48.PubMedCrossRefGoogle Scholar
  123. 123.
    Sakuradani E, Kobayashi M, Shimizu S. Delta 6-fatty acid desaturase from an arachidonic acid-producing Mortierella fungus—gene cloning and its heterologous expression in a fungus. Aspergillus. Gene. 1999;238(2):445–53.PubMedCrossRefGoogle Scholar
  124. 124.
    Wang DP, Li MC, Wei DS, et al. Identification and functional characterization of the delta 6-fatty acid desaturase gene from Thamnidium elegans. J Eukaryot Microbiol. 2007;54(1):110–7.PubMedCrossRefGoogle Scholar
  125. 125.
    Wan X, Zhang YB, Wang P, Jiang ML. Molecular cloning and expression analysis of a Delta 6-fatty acid desaturase gene from Rhizopus stolonifer strain yf6 which can accumulate high levels of gamma-linolenic acid. J Microbiol. 2011;49(1):151–4.PubMedCrossRefGoogle Scholar
  126. 126.
    Zank TK, Zahringer U, Beckmann C, et al. Cloning and functional characterisation of an enzyme involved in the elongation of Delta 6-polyunsaturated fatty acids from the moss Physcomitrella patens. Plant J. 2002;31(3):255–68.PubMedCrossRefGoogle Scholar
  127. 127.
    Zhou XR, Robert SS, Petrie JR, et al. Isolation and characterization of genes from the marine microalga Pavlova salina encoding three front-end desaturases involved in docosahexaenoic acid biosynthesis. Phytochemistry. 2007;68(6):785–96.PubMedCrossRefGoogle Scholar
  128. 128.
    Hong H, Datla N, MacKenzie SL, Qiu X. Isolation and characterization of a delta5 FA desaturase from Pythium irregulare by heterologous expression in Saccharomyces cerevisiae and oilseed crops. Lipids. 2002;37(9):863–8 Epub 2002/12/03.PubMedCrossRefGoogle Scholar
  129. 129.
    Jiang M, Guo B, Wan X, et al. Isolation and characterization of the diatom Phaeodactylum Delta5-elongase gene for transgenic LC-PUFA production in Pichia pastoris. Marine Drugs. 2014;12(3):1317–34 (Epub 2014/03/13).PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Qiu X, Hong HP, MacKenzie SL. Identification of a Delta 4 fatty acid desaturase from Thraustochytrium sp involved in the biosynthesis of docosahexanoic acid by heterologous expression in Saccharomyces cerevisiae and Brassica juncea. J Biol Chem. 2001;276(34):31561–6.PubMedCrossRefGoogle Scholar
  131. 131.
    Pollak DW, Bostick MW, Yoon H, et al. Isolation of a Delta 5 desaturase gene from Euglena gracilis and functional dissection of its HPGG and HDASH motifs. Lipids. 2012;47(9):913–26.PubMedCentralCrossRefGoogle Scholar
  132. 132.
    Pereira SL, Leonard AE, Huang YS, Chuang LT, Mukerji P. Identification of two novel microalgal enzymes involved in the conversion of the omega 3-fatty acid, eicosapentaenoic acid, into docosahexaenoic acid. Biochem J. 2004;384:357–66.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Xue Z, He H, Hollerbach D, et al. Identification and characterization of new Delta-17 fatty acid desaturases. Appl Microbiol Biotechnol. 2013;97(5):1973–85 Epub 2012/05/29.PubMedCrossRefGoogle Scholar
  134. 134.
    Qiu X, Truksa M and Hu Z. Flax (Linum usitatissimum L.) seed-specific promoters. Google Patents; 2009.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Tejas P. Chirmade
    • 1
  • Smrati Sanghi
    • 1
  • Ashwini V. Rajwade
    • 1
  • Vidya S. Gupta
    • 1
  • Narendra Y. Kadoo
    • 1
    Email author
  1. 1.CSIR-National Chemical LaboratoryBiochemical Sciences DivisionPuneIndia

Personalised recommendations