Omega-3 Fatty Acids in Cancer: Insight into the Mechanism of Actions in Preclinical Cancer Models

  • Asavari A. Joshi
  • Mahabaleshwar V. Hegde
  • Sharad P. AdekarEmail author


Worldwide, the incidences of cancer are rising. Various environmental and genetic factors are predisposing individuals to cancer. Majority of these factors result in upregulation of pro-survival pathways, downregulation of tumor suppressors, and chronic inflammation. The ratio of w-6/w-3 polyunsaturated fatty acids (PUFAs) plays very crucial role in the initiation and progression of cancer. Low w-6/w-3 PUFA ratio has been shown beneficial in managing the hallmarks of cancer cell. Enormous data from cancer cell line and in vivo cancer models have given insight into the mechanisms underlying the anticancer effects of w-3 PUFAs. Here, we discussed major possible mechanisms for beneficial effects of w-3 PUFAs as evidenced by the preclinical in vitro cancer cell line models and in vivo models.


Anticancer Lipid peroxidation Lipid rafts Eicosanoids Mitochondrial hyperpolarization Inflammation Apoptosis Metastasis Immunomodulation Fat-1 transgenic mouse model 



Lipoxin A4 receptor/formyl peptide receptor 2 (ALX/FPR2)


Activator protein 1


Bcl-2 homologous antagonist killer


Bcl-2-associated X protein


B-cell lymphoma 2


Breast cancer resistance protein


Basic fibroblast growth factor


Leukotriene B4 receptor 1




Chemokine (C–C motif) ligand 2


C–C chemokine receptor type 5


Chemerin Receptor 23




Cytosolic phospholipases A2


C–X–C motif chemokine 12


Cytochrome P450




Docosahexaenoic acid


Detergent-resistant membranes


Epoxydocosapentaenoic acids


Epoxyeicosatrienoic acids


Epoxyeicosatetraenoic acids


Electrophile oxo-derivative


Epidermal growth factor


Epidermal growth factor receptor


Epithelial growth factor receptor


Eicosapentaenoic acid


Epithelial–mesenchymal transition


Estrogen receptor


Electron transport chain


Fatty acids


Fatty acid synthase


G protein-coupled receptor 120


G protein-coupled receptor 32


Hydroxyeicosapentaenoic acids


Human epidermal growth factor receptor 2


Hydroxyeicosatetraenoic acids


Hepatocyte growth factor


Hypoxia-inducible factor


High-mobility group box-1


3-hydroxy-3methylglutaryl-coenzyme A reductase


Human umbilical vein endothelial cells


Hydroxyeicosapentaenoic acid


Intercellular adhesion molecule 1


Insulin-like growth factor 1 receptor


Interleukin 1


Interleukin 10


Interleukin 6


Inducible nitric oxide synthase


c-Jun N-terminal kinas


Linoleic acid


Long-chain polyunsaturated fatty acid




Leukotriene B4


Mitogen-activated protein kinases


Monocyte chemotactic protein 1


Macrophage colony-stimulating factor


Matrix metalloproteases


Multidrug resistance-related proteins


Mitochondrial permeability transition






Nuclear factor-kappaB


Nitric oxide


Nuclear factor (erythroid-derived 2)-like 2


Oncostatin M


Proliferating cell nuclear antigen


Platelet-derived growth factor


Pyruvate dehydrogenase


Pyruvate dehydrogenase kinase


P-glycoprotein/ATP-binding cassette subfamily B member


Phosphoinositide 3-kinase/mammalian target for rapamycin


Protein kinase C




Peroxisome proliferator-activated receptors


PPAR response elements


Polyunsaturated fatty acids


Reactive oxygen species


Retinoid X receptor


Store-operated calcium influx


Sterol regulatory element-binding protein-1


Signal transducer and activator of transcription 3


Transforming growth factor β-activated kinase-1


Tumor-associated macrophages


Tumor-associated neutrophils

TCA cycle

Tricarboxylic acid cycle


Transforming growth factor-beta


Tumor necrosis factor-alpha


Vascular cell adhesion protein 1


Vascular endothelial growth factor


α-linolenic acid



Authors would like to thank Mr. Aniket Mali for the illustration in Fig. 12.1.


  1. 1.
    Stephenson JA, Al-Taan O, Arshad A, Morgan B, Metcalfe MS, Dennison AR. The multifaceted effects of omega-3 polyunsaturated fatty acids on the hallmarks of cancer. J Lipids. 2013;2013 (Article ID 261247).Google Scholar
  2. 2.
    Aggarwal BB, Vijayalekshmi RV, Sung B. Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res. 2009;15:425.CrossRefPubMedGoogle Scholar
  3. 3.
    Anand P, Kunnumakkara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, et al. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res. 2008;25(9):2097–116.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Nathalie V, Lajoie-Mazenc I, Auge N, Suc I, Frisach MF, et al. Activation of epithelial growth factor receptor pathway by unsaturated fatty acids. Circ Res. 1999;85:892–9.Google Scholar
  5. 5.
    Ries A, Trottenberg P, Elsner F. A systematic review on the role of fish oil for the treatment of cachexia in advanced cancer: an EPCRC cachexia guidelines project. Palliat Med. 2012;26:294–304.CrossRefPubMedGoogle Scholar
  6. 6.
    Giessman H, Johnson JI, Kogner P. Omega-3 fatty acids in cancer, the protectors of good and the killers of evil? Exp Cell Res. 2010;316:1365–73.CrossRefGoogle Scholar
  7. 7.
    Hanahan D, Weinberg RA. The hallmarks of cancer review. Cell. 2000;100:57–70.CrossRefPubMedGoogle Scholar
  8. 8.
    Signori C, El-Bayoumy K, Russo J, Thompson HJ, Richie JP, Hartman TJ, et al. Chemoprevention of breast cancer by fish oil in preclinical models: trials and tribulations. Cancer Res. 2011;71(19):1–6.CrossRefGoogle Scholar
  9. 9.
    Erickson KL, Hubbard NE. Fatty acids and breast cancer: the role of stem cells. Prostaglandins LeukotEssent Fatty Acids. 2010;82:237–41.CrossRefGoogle Scholar
  10. 10.
    Pauwels EK, Kairemo K. Fatty acid facts, part II: role in the prevention of carcinogenesis, or, more fish on the dish? Drug News Perspect. 2008;21:504–10.CrossRefPubMedGoogle Scholar
  11. 11.
    Tapiero H, Ba GN, Couvreur P, Tew KD. Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies. Biomed Pharmacother. 2002;56(5):215–22.CrossRefPubMedGoogle Scholar
  12. 12.
    Elaine HW, Munoz J Jr, Cameron I. Role of lipid peroxidation and antioxidant enzymes in omega 3 fatty acids induced suppression of breast cancer xenograft growth in mice. Cancer Cell Int. 2002;2:10.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fukui M, Kang KS, Okada K, Zhu BT. EPA, an omega-3 fatty acid, induces apoptosis in human pancreatic cancer cells: role of ros accumulation, caspase-8 activation, and autophagy induction. J Cell Biochem. 2012;114(1):192–203.CrossRefGoogle Scholar
  14. 14.
    Epstein MM, Kasperzyk JL, Mucci LA, Giovannucci E, Price A, Wolk A, et al. Dietary fatty acid intake and prostate cancer survival in Örebro County, Sweden. Am J Epidemiol. 2012;176(3):240–52.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Fernandez E, Chatenoud L, La Vecchia C, Negri E, Franceschi S. Fish consumption and cancer risk. Am J Clin Nutr. 1999;70(1):85–90.PubMedGoogle Scholar
  16. 16.
    Caygill CPJ, Hill MJ. Fish n-3 fatty acids and human colorectal and breast cancer. Eur J Cancer Prev. 1995;4:329–32.CrossRefPubMedGoogle Scholar
  17. 17.
    Courtney ED, et al. Eicosapentaenoic acid (EPA) reduces crypt cell proliferation and increases apoptosis in normal colonic mucosa in subjects with a history of colorectal adenomas. Int J Colorectal Dis. 2007;22(7):765–76.CrossRefPubMedGoogle Scholar
  18. 18.
    Chang WC, Chapkin RS, Lupton JR. Predictive value of proliferation, differentiation and apoptosis as intermediate markers for colon tumorigenesis. Carcinogenesis. 1997;18(4):721–30.CrossRefPubMedGoogle Scholar
  19. 19.
    Hong MY, Chapkin RS, Barhoumi R, et al. Fish oil increases mitochondrial phospholipid unsaturation, upregulating reactive oxygen species and apoptosis in rat colonocytes. Carcinogenesis. 2002;23:1919–25.CrossRefPubMedGoogle Scholar
  20. 20.
    Ng Y, Barhoumi R, Tjalkens RB, Fan YY, Kolar S, Wang N, et al. The role of docosahexaenoic acid in mediating mitochondrial membrane lipid oxidation and apoptosis in colonocytes. Carcinogenesis. 2005;26(11):1914–21.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Shin S, Jing K, Jeong S, Kim N, Song K-S, Heo J-Y, et al. The omega-3 polyunsaturated fatty acid DHA induces simultaneous apoptosis and autophagy via mitochondrial ROS-Mediated Akt-mTOR signaling in prostate cancer cells expressing mutant p 53. BioMed Res Int. 2013;2013 (Article ID 568671).Google Scholar
  22. 22.
    Bingham SA, Day NE, Luben R, et al. Dietary fibre in food and protection against colorectal cancer in European prospective investigation into cancer and nutrition (EPIC): an observational study. Lancet. 2003;361(9368):1496–501.CrossRefPubMedGoogle Scholar
  23. 23.
    Kolar SSN, Barhoumi R, Lupton JR, Chapkin RS. Docosahexaenoic acid and butyrate synergistically induce colonocyte apoptosis by enhancing mitochondrial Ca2+ accumulation. Cancer Res. 2007;67:5561–8.Google Scholar
  24. 24.
    Ng Y, Barhoumi R, Tjalkens RB, Fan YY, Kolar S, Wang N, et al. The role of docosahexaenoic acid mediating mitochondrial membrane lipid oxidation and apoptosis in colonocytes. Carcinogenesis. 2005;26:1914–21.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Nutt LK, Chandra J, Pataer A, et al. Bax-mediated Ca2+ mobilization promotes cytochrome c release during apoptosis. J Biol Chem. 2002;277:20301–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Szalai G, Krishnamurthy R, Hajnoczky G. Apoptosis driven by IP(3)-linked mitochondrial calcium signals. EMBO J. 1999;18(22):6349–61.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Rizzuto R, Pozzan T. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev. 2006;86(1):369–408.CrossRefPubMedGoogle Scholar
  28. 28.
    Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 2007;11(1):37–51.Google Scholar
  29. 29.
    Mantovani A, Allavena P, Sica A, Balkwill F. Cancer related inflammation. Nature. 2008;454:436–44.CrossRefPubMedGoogle Scholar
  30. 30.
    Griennikov SI, Greten FR, Karin M. immunity inflammation and cancer. Cell. 2010;140(6):883–99.CrossRefGoogle Scholar
  31. 31.
    Fiala M. Curcumin and omega-3 fatty acids enhance NK cell-induced apoptosis of pancreatic cancer cells but curcumin inhibits interferon-γ production: benefits of omega-3 with curcumin against cancer. Molecules. 2015;20(2):3020–6.CrossRefPubMedGoogle Scholar
  32. 32.
    Tak PP, Firestein GS. NF-κB: a key role in inflammatory diseases. J Clin Invest. 2001;107(1):7–11.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Schmitz G, Ecker J. The opposing effects of n-3 and n-6 fatty acids. Prog Lipid Res. 2008;47(2):147–55.CrossRefPubMedGoogle Scholar
  34. 34.
    Abedi E, Sahari MA. Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci Nutr. 2014;2(5):443–63.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Wahli W, et al. PPARs at the crossroads of lipid signaling and inflammation. Trends Endocrinol Metab. 2012;23(7):351–63.Google Scholar
  36. 36.
    Rogers KR, Kikawa KD, Mouradian M, Hernandez K, McKinnon KM, Ahwah SM. Docosahexaenoic acid alters epidermal growth factor receptor related signaling by disrupting its lipid raft association. Carcinogenesis. 2010;31(9):1523–30.CrossRefPubMedGoogle Scholar
  37. 37.
    Karmali RA, Reichel P, Cohen LA, Terano T, Hirai A, Tamura Y, et al. The effects of dietary omega-3 fatty acids on the DU-145 transplantable human prostatic tumor. Anticancer Res. 1987;7:1173–80.PubMedGoogle Scholar
  38. 38.
    Galli C, Calder PC. Effects of fat and fatty acids intake on inflammatory and immune responses. A critical review. Ann Nutr Metab. 2009;55:123–39.CrossRefPubMedGoogle Scholar
  39. 39.
    Fradet V, Cheng I, Casey G, Witte JS. Dietary omega3 fatty acids, cyclooxygenase-2 genetic variation, and aggressive prostate cancer risk. Clin Cancer Res. 2009;15(7):2559–66.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wang D, DuBois RN. The role of the PGE2–aromatase pathway in obesity-associated breast inflammation. Cancer Discov. 2012;2(4):308–10.CrossRefPubMedGoogle Scholar
  41. 41.
    Surh Y-J, Chun K-S, Cha H-H, Han SS, Keum Y-S, Park K-K, Lee SS. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mutat Res Fundam Mol Mech Mutagen. 2001;480–481:243–68.Google Scholar
  42. 42.
    Brodie MH, Lu Q, Long BJ, Fulton A, Chen T, Macpherson N, et al. Aromatase and COX-2 expression in human breast cancers. J Steroid Biochem Mol Biol. 2001;79(1–5):41–7.CrossRefPubMedGoogle Scholar
  43. 43.
    Brueggemeier RW, Quinn AL, Parrett ML, Joarder FS, Harris RE, Robertson FM. Correlation of aromatase and cyclooxygenase gene expression in human breast cancer specimens. Cancer Lett. 1999;140(1–2):27–35.CrossRefPubMedGoogle Scholar
  44. 44.
    Bhat H. Estrogen’s role in cancer. Columbia Univ Health Sci. 2003;2(10).Google Scholar
  45. 45.
    Liu J, Ma DWL. The Role of n-3 polyunsaturated fatty acids in the prevention and treatment of breast cancer. Nutrients. 2014;6(11):5184–223.Google Scholar
  46. 46.
    Narayanan BA, Narayanan NK, Simi B, Reddy BS. Modulation of inducible nitric oxide synthase and related proinflammatory genes by the omega-3 fatty acid docosahexaenoic acid in human colon cancer cells. Cancer Res. 2003;63:972–9.PubMedGoogle Scholar
  47. 47.
    Krishnan AV, Trump DL, Johnson CS, Feldman D. The role of vitamin D in cancer prevention and treatment. Endocrinol Metab Clin. 2010;39:401–18.CrossRefGoogle Scholar
  48. 48.
    Gleissman H, Yang R, Martinod K, Lindskog M, Serhan CN, Johnsen JI, et al. Docosahexaenoic acid metabolome in neural tumors: identification of cytotoxic intermediates. FASEB J. 2010;24(3):906–15.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Narayanan NK, Narayanan BA, Reddy BS. A combination of docosahexaenoic acid and celecoxib prevents prostate cancer cell growth in vitro and is associated with modulation of nuclear factor-kappaB, and steroid hormone receptors. Int J Oncol. 2005;26(3):785–92.PubMedGoogle Scholar
  50. 50.
    Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 2013;12:931–47.CrossRefPubMedGoogle Scholar
  51. 51.
    Groeger AL, Cipollina C, Cole MP, Woodcock SR, Bonacci G, Rudolph TK, et al. Cyclooxygenase-2 generates anti-inflammatory mediators from omega-3 fatty acids. Nat Chem Biol. 2010;6:433–41.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan WQ, et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin sensitizing effect. Cell. 2010;142(5):687–98.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Liu Z, Hopkins MM, Zhang Z, Quisenberry CB, Fix LC, Galvan BM, et al. Omega-3 fatty acids and other FFA4 agonists inhibit growth factor signaling in human prostate cancer cells. J Pharmacol Exp Ther. 2015;352:380–94.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Serhan CN, Yacoubian S, Yang R. Anti-inflammatory and pro-resolving lipid mediators. Annu Rev Pathol. 2008;3:279–312.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Lee HJ, Park MK, Lee EJ, Lee CH. Resolvin D1 inhibits TGF-β1-induced epithelial mesenchymal transition of A549 lung cancer cells via lipoxin A4 receptor/formyl peptide receptor 2 and GPR32. Int J Biochem Cell Biol. 2013;45(12):2801–7.Google Scholar
  56. 56.
    Hutchinson JM, Volpato M, Loadman P, Nicolaou A, Hull M. Neoplasia and cancer pathogenesis PWE-163 Chemr23 and BLT1 receptor expression in colorectal cancer. Gut. 2013;62:A196–7.CrossRefGoogle Scholar
  57. 57.
    Cockbain AJ, Toogood GJ, Hull MA. Omega-3 polyunsaturated fatty acids for the treatment and prevention of colorectal cancer. Gut. 2012;61(1):135–49.CrossRefPubMedGoogle Scholar
  58. 58.
    Calder PC, Yaqoob P. Lipid rafts—composition, characterization, and controversies. J Nutr. 2007;137(3):545–7 (American Society for Nutrition).PubMedGoogle Scholar
  59. 59.
    Anchisi L, Dessi S, Pani A, Mandas A. Cholesterol homeostasis: a key to prevent or slow down neurodegeneration. Frontiers. 2012;3 (Article 486).Google Scholar
  60. 60.
    Blanckaert V, Ulmann L, Mimouni V, Antol J, Brancquart L, Chénais B. Docosahexaenoic acid intake decreases proliferation, increases apoptosis and decreases the invasive potential of the human breast carcinoma cell line MDA-MB-231. Int J Oncol. 2010;36:737–42.CrossRefPubMedGoogle Scholar
  61. 61.
    Hawk ET, Viner JL, Dannenberg A, DuBois RN. COX-2 in cancer—a player that’s defining the rules. J Natl Cancer Inst. 2002;94:545–6.CrossRefPubMedGoogle Scholar
  62. 62.
    McCormick DL, Rao KV, Steele VE, Lubet RA, Kelloff GJ, Bosland MC. Chemoprevention of rat prostate carcinogenesis by 9-cis-retinoic acid. Cancer Res. 1999;59:521–4.PubMedGoogle Scholar
  63. 63.
    Rao KV, Johnson WD, Bosland MC, Lubet RA, Steele VE, Kelloff GJ, et al. Chemoprevention of rat prostate carcinogenesis by early and delayed administration of dehydroepiandrosterone. Cancer Res. 1999;59:3084–9 (1999).PubMedGoogle Scholar
  64. 64.
    Swamy MV, Cooma I, Patlolla JM, Simi B, Reddy BS, Rao CV. Modulation of cyclooxygenase-2 activities by the combined action of celecoxib and decosahexaenoic acid: novel strategies for colon cancer prevention and treatment. Mol Cancer Ther. 2004;3:215–21.PubMedGoogle Scholar
  65. 65.
    Wu M, Harvey KA, Ruzmetov N, Welch ZR, Sech L, Jackson K, et al. Omega-3 polyunsaturated fatty acids attenuate breast cancer growth through activation of a neutral sphingomyelinase-mediated pathway. Int J Cancer. 2005;117:340–8.CrossRefPubMedGoogle Scholar
  66. 66.
    Flock MR, Harris WS, Kris-Etherton PM. Long-chain omega-3 fatty acids: time to establish a dietary reference intake. Nutr Rev. 2013;71(10):692–707.CrossRefPubMedGoogle Scholar
  67. 67.
    Schley PD, Brindley DN, Field CJ. (n-3) PUFA alter raft lipid composition and decrease epidermal growth factor receptor levels in lipid rafts of human breast cancer cells. J Nutr. 2007;548–53.Google Scholar
  68. 68.
    Corsetto PA, GigliolaMontorfano SZ, Jovenitti IE, Cremona A, Berra B, et al. Effects of n-3 PUFAs on breast cancer cells through their incorporation in plasma membrane. Lipids Health Dis. 2011;10:73.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Kang KS, Wang P, Yamabe N, Fukui M, Jay T, Zhu BT. Docosahexaenoic acid induces apoptosis in MCF-7 cells in vitro and in vivo via reactive oxygen species formation and caspase 8 activation. PLoS One. 2010;5(4):e10296.Google Scholar
  70. 70.
    Mobraten K, Haug TM, Kleiveland CR, Lea T. Omega-3 and omega-6 PUFAs induce the same GPR120-mediated signalling events, but with different kinetics and intensity in Caco-2 cells. Lipids Health Dis. 2013;12:101.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Rahman MM, Veigas M, Williams PJ, Fernandes G. DHA is a more potent inhibitor of breast cancer metastasis to bone and related osteolysis than EPA. Breast Cancer Res Treat. 2013;141(3). doi: 10.1007/s10549-013-2703-y.
  72. 72.
    Calviello G, Palozza P, Di Nicuolo F, Maggiano N, Bartoli GM. n–3 PUFA dietary supplementation inhibits proliferation and store-operated calcium influx in thymoma cells growing in Balb/c mice. J Lipid Res. 2000;41:182–8.PubMedGoogle Scholar
  73. 73.
    Menendez JA, Ropero S, Mehmi I, Atlas E, Colomer R, Lupu R. Overexpression and hyperactivity of breast cancer-associated fatty acid synthase (oncogenic antigen-519) is insensitive to normal arachidonic fatty acid-induced suppression in lipogenic tissues but it is selectively inhibited by tumoricidal alpha-linolenic and gamma-linolenic fatty acids: a novel mechanism by which dietary fat can alter mammary tumorigenesis. Int J Oncol. 2004;24(6):1369–83.PubMedGoogle Scholar
  74. 74.
    Elaine Hardman W. Omega-3 fatty acids to augment cancer therapy. american society for nutritional sciences. Int Res Conf Food Nutr Cancer. 2002;132:3508S–12S.Google Scholar
  75. 75.
    Baracos VE, Mazurak VC, Ma DWL. n-3 polyunsaturated fatty acids throughout the cancer trajectory: influence on disease incidence, progression, response to therapy and cancer-associated cachexia. Nutr Res Rev. 2004;17:177–92.CrossRefPubMedGoogle Scholar
  76. 76.
    Yip KW, Reed JC. Bcl-2 family proteins and cancer. Oncogene. 2008;27(50):6398–406.CrossRefPubMedGoogle Scholar
  77. 77.
    Spencer L, Mann C, Metcalfe M, Webb MB, Pollard C, Spencer D, et al. The effect of omega-3 FAs on tumour angiogenesis and their therapeutic potential. Eur J Cancer. 2009;45:2077–86.CrossRefPubMedGoogle Scholar
  78. 78.
    Vakkila L. Inflammation and necrosis promote tumor growth. Nat Rev Immunol. 2004;4:641–8.CrossRefPubMedGoogle Scholar
  79. 79.
    Tang D, Kang R, Zeh HJ III, Lotze MT. High-mobility Group box 1 [HMGB1] and cancer. Biochim Biophys Acta. 2010;1799(1–2):131.Google Scholar
  80. 80.
    Joyce JA, Pollard JW, et al. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9(4):239–52.CrossRefPubMedGoogle Scholar
  81. 81.
    Zhang G, Panigrahy D, Mahakiane LM, Yang J, Liu J-Y, Leea KSS, et al. Epoxy metabolites of docosahexaenoic acid (DHA) inhibit angiogenesis, tumor growth, and metastasis. PNAS. 2013;110(16):6530–35.Google Scholar
  82. 82.
    Calviello G, Serini S. Dietary omega-3 polyunsaturated fatty acids and cancer. Diet Cancer Ser. 2010;1.Google Scholar
  83. 83.
    Rose DP, Connolly JM, Coleman M. Effect of omega-3 fatty acids on the progression of metastases after the surgical excision of human breast cancer cell solid tumors growing in nude mice. Clin Cancer Res. 1996;2:1751–6.PubMedGoogle Scholar
  84. 84.
    Merendino N, Costantini L, Manzi L, Molinari R, D’Eliseo D, Velotti F. Dietary ω-3 polyunsaturated fatty acid DHA: a potential adjuvant in the treatment of cancer. BioMed Res Int. 2013;11 pages (ArticleID310186).Google Scholar
  85. 85.
    Li CC, Hou YC, Yeh CL, Yeh SL. Effects of eicosapentaenoic acid and docosahexaenoic acid on prostate cancer cell migration and invasion induced by tumor-associated macrophages. PLoS ONE. 2014;9(6):e99630.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Cunningham-Rundles S. Is the fatty acid composition of immune cells the key to normal variations in human immune response? Am J Clin Nutr. 2003;77(5):1096–7.PubMedGoogle Scholar
  87. 87.
    Mantovani A. Macrophages, neutrophils, and cancer: a double edged sword. New J Sci. 2014;2014:14 pages (Article ID 271940).Google Scholar
  88. 88.
    Galdiero MR, Bonavita E, Barajon I, Garlanda C, Mantovani A, Jaillon S. Tumor associated macrophages and neutrophils in cancer. Immunobiology; 2013.Google Scholar
  89. 89.
    Menendez JA, Lupu R, Colomer R. Exogenous supplementation with omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA; 22, 6n-3) synergistically enhances taxane cytotoxicity and downregulates Her-2/neu (c-erbB-2) oncogene expression in human breast cancer cells. Eur J Cancer Prev. 2005;14:263–70.CrossRefPubMedGoogle Scholar
  90. 90.
    Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L, et al. Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest. 1999;104:263–9.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Jing Y, Dai J, Chalmers-Redman RM, Tatton WG, Waxman S. Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood. 1999;94:2102–11.PubMedGoogle Scholar
  92. 92.
    Chen GQ, Zhu J, Shi XG, Ni JH, Zhong HJ, Si GY, et al. In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RAR alpha/PML proteins. Blood. 1996;88:1052–61.PubMedGoogle Scholar
  93. 93.
    Chen GQ, Shi XG, Tang W, Xiong SM, Zhu J, Cai X, et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells. Blood. 1997;89:3345–53.PubMedGoogle Scholar
  94. 94.
    Calviello G, Di Nicuolo F, Serini S, Piccioni E, Boninsegna A, Maggiano N. Docosahexaenoic acid enhances the susceptibility of human colorectal cancer cells to 5-fluorouracil. Cancer Chemother Pharmacol. 2005;55:12–20.CrossRefPubMedGoogle Scholar
  95. 95.
    Zhou Z, Zhang L, Mu Q, Lou Y, Gong Z, Shi Y, et al. The effect of combination treatment with docosahexaenoic acid and 5-fluorouracil on the mRNA expression of apoptosisrelated genes, including the novel gene BCL2L12, in gastric cancer cells. In Vitro Cell Dev Biol Anim. 2009;45:69–74.CrossRefGoogle Scholar
  96. 96.
    Guffy MM, North JA, Burns CP. Effect of cellular fatty acid alteration on adriamycin sensitivity in cultured L1210 murine leukemia cells. Cancer Res. 1984;44:1863–6.PubMedGoogle Scholar
  97. 97.
    Zijlstra JG, de Vries EG, Muskiet FA, Martini IA, Timmer-Bosscha H, Mulder NH. Influence of docosahexaenoic acid in vitro on intracellular adriamycin concentration in lymphocytes and human adriamycin-sensitive and -resistant small-cell lung cancer cell lines, and on cytotoxicity in the tumor cell lines. Int J Cancer. 1987;40:850–6.CrossRefPubMedGoogle Scholar
  98. 98.
    Das UN, Madhavi N, Sravan Kumar G, Padma M, Sangeetha P. Can tumour cell drug resistance be reversed by essential fatty acids and their metabolites? Prostaglandins Leukot Essent Fatty Acids. 1998;58:39–54.CrossRefPubMedGoogle Scholar
  99. 99.
    Vibet S, Goupille C, Bougnoux P, Steghens JP, Gore J, Maheo K. Sensitization by docosahexaenoic acid (DHA) of breast cancer cells to anthracyclines through loss of glutathione peroxidase (GPx1) response. Free Radic Biol Med. 2008;44(7):1483–91.CrossRefPubMedGoogle Scholar
  100. 100.
    Gelsomino G, et al. Omega 3 fatty acids chemosensitize multidrug resistant colon cancer cells by down-regulating cholesterol synthesis and altering detergent resistant membranes composition. Mol Cancer. 2013;12:137.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Maheo K, Vibet S, Steghens JP, Dartigeas C, Lehman M, Bougnoux P, et al. Differential sensitization of cancer cells to doxorubicin by DHA: a role for lipoperoxidation. Free Radic Biol Med. 2005;39:742–51.CrossRefPubMedGoogle Scholar
  102. 102.
    Tjandrawinata RR, Dahiya R, Hughes-Fulford M. Induction of cyclo-oxygenase-2 mRNA by prostaglandin E2 in human prostatic carcinoma cells. Br J Cancer. 1997;75:1111–8.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Taketo MM. Cyclooxygenase-2 inhibitors in tumorigenesis (part I). J Natl Cancer Inst. 1998;90:1529–36.CrossRefPubMedGoogle Scholar
  104. 104.
    Dannenberg AJ, Altorki NK, Boyle JO, Dang C, Howe LR, Weksler BB, et al. Cyclo-oxygenase 2, a pharmacological target for the prevention of cancer. Lancet Oncol. 2001;2:544–51.CrossRefPubMedGoogle Scholar
  105. 105.
    Saw CL, Huang Y, Kong AN. Synergistic antiinflammatory effects of low doses of curcumin in combination with polyunsaturated fatty acids: docosahexaenoic acid or eicosapentaenoic acid. Biochem Pharmacol. 2010;79:421–30.CrossRefPubMedGoogle Scholar
  106. 106.
    Elaine Hardman W, Reddy Avula CP, Fernandes G, Cameron IL. Three percent dietary fish oil concentrate increased efficacy of doxorubicin against MDA-MB 231 breast cancer xenografts. Clin Cancer Res. 2001;7:2041.Google Scholar
  107. 107.
    MacLennan MB, Clarke SE, Perez K, Wood GA, Muller WJ, Kang JX, et al. Mammary tumor development is directly inhibited by lifelong n-3 polyunsaturated fatty acids. J Nutr Biochem. 2013;24(1):388–95.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Asavari A. Joshi
    • 1
  • Mahabaleshwar V. Hegde
    • 1
  • Sharad P. Adekar
    • 2
    Email author
  1. 1.Center for Nutrition Health and DiseaseIRSHA, Bharati Vidyapeeth Deemed UniversityPuneIndia
  2. 2.Western IRBPuyallupUSA

Personalised recommendations