Advertisement

A Survey of Annotated Logics

  • Seiki AkamaEmail author
Chapter
Part of the Intelligent Systems Reference Library book series (ISRL, volume 110)

Abstract

Annotated logics have been originally developed as foundations for paraconsistent logic programming, and later developed as paracomplete and paraconsistent logics by J.M. Abe and others. In this paper, we present the formalization of propositional and predicate annotated logics. We also review some formal issues.

Keywords

Paraconsistent logics Annotated logics Paraconsistency Paracompleteness Paraconsistent logic programming 

Notes

Acknowledgments

We are grateful to the referee and J.M. Abe for useful comments.

References

  1. 1.
    Abe, J. M.: On the Foundations of Annotated Logics (in Portuguese). Ph.D. Thesis, University of São Paulo, Brazil (1992)Google Scholar
  2. 2.
    Abe, J.M.: On annotated modal logics. Mathematica Japonica 40, 553–56 (1994)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Abe, J.M.: Curry algebra \(P\tau \). Logique et Analyse 161-162-163, 5–15 (1998)Google Scholar
  4. 4.
    Abe, J.M. (ed.): Paraconsistent Intelligent Based-Systems. Springer, Heidelberg (2015)Google Scholar
  5. 5.
    Abe, J.M., Akama, S.: Annotated logics \(Q\tau \) and ultraproduct. Logique et Analyse 160, 335–343 (1997) (published in 2000)Google Scholar
  6. 6.
    Abe, J.M., Akama, S.: On some aspects of decidability of annotated systems. In: Arabnia, H.R. (ed.) Proceedings of the International Conference on Artificial Intelligence, vol. II, pp. 789–795. CREA Press (2001)Google Scholar
  7. 7.
    Abe, J.M., Akama, S.: Annotated temporal logics \(\Delta \tau \). In: Advances in Artificial Intelligence: Proceedings of IBERAIA-SBIA 2000, LNCS 1952, pp. 217–226. Springer, Berlin (2000)Google Scholar
  8. 8.
    Abe, J.M., Akama, S., Nakamatsu, K.: Introduction to Annotated Logics. Springer, Heidelberg (2015)CrossRefzbMATHGoogle Scholar
  9. 9.
    Akama, S., Abe, J.M.: Many-valued and annotated modal logics. In: Proceedings of the 28th International Symposium on Multiple-Valued Logic, pp. 114–119. Fukuoka (1998)Google Scholar
  10. 10.
    Akama, S., Abe, J.M.: Fuzzy annotated logics. In: Proceedings of IPMU’2000, pp. 504–508. Madrid, Spain (2000)Google Scholar
  11. 11.
    Akama, S., Abe, J.M.: The degree of inconsistency in paraconsistent logics. In: Abe, J.M., da Silva Filho, J.I. (eds.) Logic, Artificial Intelligence and Robotics, pp. 13–23. IOS Press, Amsterdam (2001)Google Scholar
  12. 12.
    Akama, S., Abe, J.M., Murai, T.: On the relation of fuzzy and annotated logics. In: Proceedings of ASC’2003, pp. 46–51. Banff, Canada (2003)Google Scholar
  13. 13.
    Akama, S., Abe, J.M., Murai, T.: A tableau formulation of annotated logics. In: Cialdea Mayer, M., Pirri, F. (eds.) Proceedings of TABLEAUX’2003, pp. 1–13. Rome, Italy (2003)Google Scholar
  14. 14.
    Akama, S., Nakamatsu, K., Abe, J.M.: A natural deduction system for annotated predicate logic. In: Knowledge-Based Intelligent Information and Engineering Systems: Proceedings of KES 2007—WIRN 2007, Part II, pp. 861–868. Lecture Notes on Artificial Intelligence, vol. 4693. Springer, Berlin (2007)Google Scholar
  15. 15.
    Anderson, A., Belnap, N.: Entailment: The Logic of Relevance and Necessity I. Princeton University Press, Princeton (1976)zbMATHGoogle Scholar
  16. 16.
    Anderson, A., Belnap, N., Dunn, J.: Entailment: The Logic of Relevance and Necessity II. Princeton University Press, Princeton (1992)zbMATHGoogle Scholar
  17. 17.
    Batens, D.: Dynamic dialectical logics. In: Priest, G., Routley, R., Norman, J. (eds.) Paraconsistent Logic: Essay on the Inconsistent, pp 187–217. Philosophia Verlag, München (1989)Google Scholar
  18. 18.
    Batens, D.: Inconsistency-adaptive logics and the foundation of non-monotonic logics. Logique et Analyse 145, 57–94 (1994)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Batens, D.: A general characterization of adaptive logics. Logique et Analyse 173–175, 45–68 (2001)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Belnap, N.D.: A useful four-valued logic. In: Dunn, J.M., Epstein, G. (eds.) Modern Uses of Multi-Valued Logic, pp. 8–37. Reidel, Dordrecht (1977)Google Scholar
  21. 21.
    Belnap, N.D.: How a computer should think. In: Ryle, G. (ed.) Contemporary Aspects of Philosophy, pp. 30–55. Oriel Press (1977)Google Scholar
  22. 22.
    Blair, H.A., Subrahmanian, V.S.: Paraconsistent logic programming. Theor. Comput. Sci. 68, 135–154 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Carnielli, W.A., Coniglio, M.E., Marcos, J.: Logics of formal inconsistency. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn, vol. 14, pp. 1–93 Springer, Heidelberg (2007)Google Scholar
  24. 24.
    da Costa, N.C.A.: \(\alpha \)-models and the system \(T\) and \(T^*\). Notre Dame J. Form. Logic 14, 443–454 (1974)CrossRefzbMATHGoogle Scholar
  25. 25.
    da Costa, N.C.A.: On the theory of inconsistent formal systems. Notre Dame J. Form. Logic 15, 497–510 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    da Costa, N.C.A., Abe, J.M., Subrahmanian, V.S.: Remarks on annotated logic. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 37, 561–570 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    da Costa, N.C.A., Alves, E.H.: A semantical analysis of the calculi \(C_n\). Notre Dame J. Form. Logic 18, 621–630 (1977)CrossRefzbMATHGoogle Scholar
  28. 28.
    da Costa, N.C.A., Henschen, L.J., Lu, J.J., Subrahmanian, V.S.: Automatic theorem proving in paraconsistent logics: foundations and implementation. In: Proceedings of the 10th International Conference on Automated Deduction, pp. 72–86, Springer, Berlin (1990)Google Scholar
  29. 29.
    da Costa, N.C.A., Subrahmanian: Paraconsistent logic as a formalism for reasoning about inconsistent knowledge. Artif. Intell. Med. 1, 167–174 (1989)Google Scholar
  30. 30.
    da Costa, N.C.A., Subrahmanian, V.S., Vago, C.: The paraconsistent logic \(P{\cal T}\). Zeitschrift für mathematische Logik und Grundlagen der Mathematik 37, 139–148 (1991)Google Scholar
  31. 31.
    Dunn, J.M.: Relevance logic and entailment. In: Gabbay, D., Gunthner, F. (eds.) Handbook of Philosophical Logic, vol. III, pp. 117–224. Reidel, Dordrecht (1986)Google Scholar
  32. 32.
    Eytan, M.: Tableaux de Smullyan, ensebles de Hintikka et tour ya: un point de vue Algebriquem. Math. Sci. Hum. 48, 21–27 (1975)MathSciNetGoogle Scholar
  33. 33.
    Jaśkowski, S.: Propositional calculus for contradictory deductive systems (in Polish). Studia Societatis Scientiarun Torunesis, Sectio A 1, 55–77 (1948)Google Scholar
  34. 34.
    Jaśkowski, S.: On the discursive conjunction in the propositional calculus for inconsistent deductive systems (in Polish). Studia Societatis Scientiarun Torunesis, Sectio A 8, 171–172 (1949)Google Scholar
  35. 35.
    Kifer, M., Lozinskii, E.L.: RI: a logic for reasoning with inconsistency. In: Proceedings of LICS4, pp. 253–262 (1989)Google Scholar
  36. 36.
    Kifer, M., Lozinskii, E.L.: A logic for reasoning with inconsistency. J. Autom. Reason. 9, 179–215 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Kifer, M., Subrahmanian, V.S.: On the expressive power of annotated logic programs. In: Proceedings of the 1989 North American Conference on Logic Programming, pp. 1069–1089 (1989)Google Scholar
  38. 38.
    Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic programming. J. Logic Program. 12, 335–367 (1992)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Mortensen, C.: Every quotient algebra for \(C_1\) is trivial. Notre Dame J. Formal Logic 21, 694–700 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Priest, G., Routley, R., Norman, J. (eds.): Paraconsistent Logic: Essays on the Inconsistent. Philosopia Verlag, München (1989)zbMATHGoogle Scholar
  41. 41.
    Priest, G.: Logic of paradox. J. Philos. Logic 8, 219–241 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Priest, G.: Paraconsistent logic. In: Gabbay, D. Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn., pp. 287–393. Kluwer, Dordrecht (2002)Google Scholar
  43. 43.
    Priest, G.: In Contradiction: A Study of the Transconsistent, 2nd edn. Oxford University Press, Oxford (2006)Google Scholar
  44. 44.
    Routley, R., Plumwood, V., Meyer, R.K., Brady, R.: Relevant Logics and Their Rivals, vol. 1. Ridgeview, Atascadero (1982)Google Scholar
  45. 45.
    Subrahmanian, V.: On the semantics of quantitative logic programs. In: Proceedings of the 4th IEEE Symposium on Logic Programming, pp. 173–182 (1987)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.C-RepublicKawasakiJapan

Personalised recommendations