Advertisement

Two Genuine 3-Valued Paraconsistent Logics

  • Jean-Yves BeziauEmail author
Chapter
Part of the Intelligent Systems Reference Library book series (ISRL, volume 110)

Abstract

In this paper we present two genuine three-valued paraconsistent logics, i.e. logics obeying neither \(p, \lnot p \vdash q\) nor \(\vdash \lnot (p \wedge \lnot p)\). We study their basic properties and their relations with other paraconsistent logics, in particular da Costa’s paraconsistent logics C1 and its extension \(C1+\).

Keywords

Paraconsistent logic Many-valued logic Negation 

Notes

Acknowledgments

This paper was written during a stay at University of Tel Aviv within the GeTFun exchange prorgram—Marie Curie project PIRSES-GA-2012-318986 funded by EU-FP7. Thanks to Arnon Avron for his useful comments.

References

  1. 1.
    Asenjo, F.G.: A calculus of antinomies. Notre Dame J. Formal Logic 7, 103–105 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arieli, O., Avron, A.: Three-valued paraconsistent propositional logics. In: Beziau, J.-Y., Chakraborty, M., Dutta, S. (eds.) New Directions in Paraconsistent Logic, pp. 91–129. Springer, New Delhi (2015)Google Scholar
  3. 3.
    Becker, J.R.: Arenhart Liberating paraconsistency from contradictions. Log. Univers. 9, 523–545 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Beziau, J.-Y.: Logiques construites suivant les méthodes de da Costa. Logique et Analyse 131–132, 259–272 (1990)MathSciNetGoogle Scholar
  5. 5.
    Beziau, J.-Y.: Nouveaux résultats et nouveau regard sur la logique paraconsistante C1. Logique et Analyse 141–142, 45–48 (1993)MathSciNetGoogle Scholar
  6. 6.
    Beziau, J.-Y.: Théorie législative de la négation pure. Logique et Analyse 147–148, 209–225 (1994)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Beziau, J.-Y.: What is paraconsistent logic?. In: Batens, D. et al. (eds.) Frontiers of Paraconsistent Logic, pp. 95–111. Research Studies Press, Baldock (2000)Google Scholar
  8. 8.
    Beziau, J.-Y.: Are paraconsistent negations negations?. In: Carnielli, W. et al. (eds.) Paraconsistency: The Logical Way to the Inconsistent, pp. 465–486. Marcel Dekker, New-York (2002)Google Scholar
  9. 9.
    Beziau, J.-Y.: Round squares are no contractions. In: Beziau, J.-Y., Chakraborty, M., Dutta, S. (eds.) New Directions in Paraconsistent Logic, pp. 39–55. Springer, New Delhi (2015)Google Scholar
  10. 10.
    Beziau, J.-Y.: Trivial dialetheism and the logic of paradox. Logic Logical Philos. 25, 51–56 (2016)Google Scholar
  11. 11.
    Beziau, J.-Y., Franschetto, A.: Strong paraconsistent three-valued logic. In: Beziau, J.-Y., Chakraborty, M., Dutta, S. (eds.) New Directions in Paraconsistent Logic, pp. 131–147. Springer, New Delhi (2015)Google Scholar
  12. 12.
    da Costa, N.C.A.: Calculs propositionnels pour les systèmes formels inconsistants. Cr. R. Acad Sc. Paris 257, 3790–3793 (1963)zbMATHGoogle Scholar
  13. 13.
    da Costa, N.C.A., Guillaume, M.: Négations composées et Loi de Peirce dans les systèmes Cn. Portugalia Mathematica 24, 201–210 (1965)zbMATHGoogle Scholar
  14. 14.
    D’Ottaviano, I.M.L., da Costa, N.C.A.: Sur un problème de Jaskowśki. Cr. R. Acad Sc. Paris 270, 1349–1353 (1970)zbMATHGoogle Scholar
  15. 15.
    Humberstone, L.: Beziau’s translation paradox. Theoria 71, 138–181 (2005)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kleene, S.: On a notation for ordinal numbers. J. Symbolic. Logic 3, 150–155 (1938)CrossRefzbMATHGoogle Scholar
  17. 17.
    Łoś, J., Suszko, R.: Remarks on sentential logics. Indigationes Mathematicae 10, 177–183 (1958)Google Scholar
  18. 18.
    Łukasiewicz, J.: O logice trójwartościowej. Ruch Filozoficny 5, 170–171 (1920)Google Scholar
  19. 19.
    Marcos, J.: 8K solutions and semi-solutions to a problem of da Costa. Unpublished manuscript (2000)Google Scholar
  20. 20.
    Priest, G.: The logic of paradox. J. Philos. Logic 8, 219–241 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Sette, A.M.: On the propositional calculus P1. Notas e comunicacões de matemática, 17, Recife (1971)Google Scholar
  22. 22.
    Urbas, I.: On Brazilian paraconsistent logics. Ph.D. Australian National University, Canberra (1987)Google Scholar
  23. 23.
    Urbas, I.: Paraconsistency and the C-systems of da Costa. Notre Dame J. Formal Logic 30, 583–597 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Urbas, I.: Paraconsistency. Studies in Soviet Thought 39, 343–354 (1989)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.UFRJ—Federal University of Rio de JaneiroRio de JaneiroBrazil
  2. 2.CNPq—Brazilian Research CouncilRio de JaneiroBrazil

Personalised recommendations