Advertisement

Why Paraconsistent Logics?

  • Seiki AkamaEmail author
  • Newton C. A. da Costa
Chapter
Part of the Intelligent Systems Reference Library book series (ISRL, volume 110)

Abstract

In this chapter, we briefly review paraconsistent logics which are closely related to the topics in this book. We give an exposition of their history and formal aspects. We also address the importance of applications of paraconsistent logics to engineering.

Keywords

Paraconsistent logics Contradiction inconsistency Paraconsistency 

Notes

Acknowledgments

The authors would like to thank the referee for constructive remarks.

References

  1. 1.
    Abe, J.M.: On the Foundations of Annotated Logics (in Portuguese), Ph.D. Thesis, University of São Paulo, Brazil (1992)Google Scholar
  2. 2.
    Abe, J.M., Akama, S., Nakamatsu, K.: Introduction to Annotated Logics. Springer, Heidelberg (2016)zbMATHGoogle Scholar
  3. 3.
    Akama, S.: Resolution in constructivism. Logique et Analyse 120, 385–399 (1987)MathSciNetGoogle Scholar
  4. 4.
    Akama, S.: Constructive predicate logic with strong negation and model theory. Notre Dame J. Formal Logic 29, 18–27 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Akama, S.: On the proof method for constructive falsity. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 34, 385–392 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Akama, S.: Subformula semantics for strong negation systems. J. Philos. Logic 19, 217–226 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Akama, S.: Constructive Falsity: Foundations and Their Applications to Computer Science, Ph.D. Thesis, Keio University, Yokohama, Japan (1990)Google Scholar
  8. 8.
    Akama, S.: Nelson’s paraconsistent logics. Logic Logical Philos. 7, 101–115 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Akama, S., Abe, J.M., Nakamatsu, K.: Constructive discursive logic with strong negation. Logique et Analyse 215, 395–408 (2011)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Almukdad, A., Nelson, D.: Constructible falsity and inexact predicates. J. Symbolic Logic 49, 231–233 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Anderson, A., Belnap, N.: Entailment: The Logic of Relevance and Necessity I. Princeton University Press, Princeton (1976)Google Scholar
  12. 12.
    Anderson, A., Belnap, N., Dunn, J.: Entailment: The Logic of Relevance and Necessity II. Princeton University Press, Princeton (1992)zbMATHGoogle Scholar
  13. 13.
    Arieli, O., Avron, A.: Reasoning with logical bilattices. J. Logic Lang. Inform. 5, 25–63 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Arieli, O., Avron, A.: The value of fur values. Artif. Intell. 102, 97–141 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Arruda, A.I.: A survey of paraconsistent logic. In: Arruda, A., da Costa, N., Chuaqui, R. (eds.) Mathematical Logic in Latin America, pp. 1–41. North-Holland, Amsterdam (1980)Google Scholar
  16. 16.
    Asenjo, F.G.: A calculus of antinomies. Notre Dame J. Formal Logic 7, 103–105 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Batens, D.: Dynamic dialectical logics. In: Priest, G., Routley, R. Norman, J. (eds.) Paraconsistent Logic: Essay on the Inconsistent, pp. 187–217. Philosophia Verlag, München (1989)Google Scholar
  18. 18.
    Batens, D.: Inconsistency-adaptive logics and the foundation of non-monotonic logics. Logique et Analyse 145, 57–94 (1994)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Batens, D.: A general characterization of adaptive logics. Logique et Analyse 173–175, 45–68 (2001)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Batens, D., Mortensen, C., Priest, G., Van Bendegem, J.-P. (eds.): Frontiers of Paraconsistent Logic. Research Studies Press, Baldock (2000)Google Scholar
  21. 21.
    Belnap, N.D.: A useful four-valued logic. In: Dunn, J.M., Epstein, G. (eds.) Modern Uses of Multi-Valued Logic, pp. 8–37. Reidel, Dordrecht (1977)Google Scholar
  22. 22.
    Belnap, N.D.: How a computer should think. In: Ryle, G. (ed.) Contemporary Aspects of Philosophy, pp. 30–55. Oriel Press (1977)Google Scholar
  23. 23.
    Beziau, J.-Y., Carnielli, W., Gabbay, D. (eds.): Handbook of Paraconsistency. College Publication, London (2007)zbMATHGoogle Scholar
  24. 24.
    Blair, H.A., Subrahmanian, V.S.: Paraconsistent logic programming. Theoret. Comput. Sci. 68, 135–154 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Carnielli, W.A., Marcos, J.: Tableau systems for logics of formal inconsistency. In: Abrabnia, H.R. (ed.), Proceedings of the 2001 International Conference on Artificial Intelligence, vol. II, pp. 848–852. CSREA Press (2001)Google Scholar
  26. 26.
    Carnielli, W.A., Coniglio, M.E., D’Ottaviano, I.M. (eds.): Paraconsistency: The Logical Way to the Inconsistent. Marcel Dekker, New York (2002)Google Scholar
  27. 27.
    Carnielli, W.A., Coniglio, M.E, Marcos, J.: Logics of formal inconsistency. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 14, 2nd edn, pp. 1–93. Springer, Heidelberg (2007)Google Scholar
  28. 28.
    da Costa, N.C.A.: On the theory of inconsistent formal systems. Notre Dame J. Formal Logic 15, 497–510 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    da Costa, N.C.A., Alves, E.H.: A semantical analysis of the calculi \(C_n\). Notre Dame J. Formal Logic 18, 621–630 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    da Costa, N.C.A., Abe, J.M., Subrahmanian, V.S.: Remarks on annotated logic. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 37, 561–570 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    da Costa, N.C.A., Subrahmanian, V.S., Vago, C.: The paraconsistent logic \(P{\cal T}\). Zeitschrift für mathematische Logik und Grundlagen der Mathematik 37, 139–148 (1991)Google Scholar
  32. 32.
    Dunn, J.M.: Relevance logic and entailment. In: Gabbay, D., Gunthner, F. (eds.) Handbook of Philosophical Logic, vol. III, pp. 117–224. Reidel, Dordrecht (1986)Google Scholar
  33. 33.
    Fitting, M.: Bilattices and the semantics of logic programming. J. Logic Program. 11, 91–116 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Fitting, M.: A theory of truth that prefers falsehood. J. Philos. Logic 26, 477–500 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Ginsberg, M.: Multivalued logics. In: Proceedings of AAAI’86, pp. 243–247. Morgan Kaufman, Los Altos (1986)Google Scholar
  36. 36.
    Ginsberg, M.: Multivalued logics: a uniform approach to reasoning in AI. Comput. Intell. 4, 256–316 (1988)Google Scholar
  37. 37.
    Jaśkowski, S.: Propositional calculus for contradictory deductive systems (in Polish). Studia Societatis Scientiarun Torunesis, Sectio A 1, 55–77 (1948)Google Scholar
  38. 38.
    Jaśkowski, S.: On the discursive conjunction in the propositional calculus for inconsistent deductive systems (in Polish). Studia Societatis Scientiarun Torunesis, Sectio A 8, 171–172 (1949)Google Scholar
  39. 39.
    Kleene, S.: Introduction to Metamathematics. North-Holland, Amsterdam (1952)zbMATHGoogle Scholar
  40. 40.
    Kripke, S.: Outline of a theory of truth. J. Philos. 72, 690–716 (1975)CrossRefzbMATHGoogle Scholar
  41. 41.
    Kifer, M., Subrahmanian, V.S.: On the expressive power of annotated logic programs. In: Proceedings of the 1989 North American Conference on Logic Programming, pp. 1069–1089 (1989)Google Scholar
  42. 42.
    Kotas, J.: The axiomatization of S. Jaskowski’s discursive logic. Studia Logica 33, 195–200 (1974)Google Scholar
  43. 43.
    Łukasiewicz, J.: On 3-valued logic. In: McCall, S. (ed.) Polish Logic, pp. 16–18, Oxford University Press, Oxford, 1967Google Scholar
  44. 44.
    Nelson, D.: Constructible falsity. J. Symbolic Logic 14, 16–26 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Nelson, D.: Negation and separation of concepts in constructive systems. In: Heyting, A. (ed.) Constructivity in Mathematics, pp. 208–225. North-Holland, Amsterdam (1959)Google Scholar
  46. 46.
    Priest, G.: Logic of paradox. J. Philos. Logic 8, 219–241 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Priest, G.: Paraconsistent logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn, pp. 287–393. Kluwer, Dordrecht (2002)Google Scholar
  48. 48.
    Priest, G.: In Contradiction: A Study of the Transconsistent, 2nd edn. Oxford University Press, Oxford (2006)Google Scholar
  49. 49.
    Priest, G., Routley, R., Norman, J. (eds.): Paraconsistent Logic: Essays on the Inconsistent. Philosophia Verlag, München (1989)zbMATHGoogle Scholar
  50. 50.
    Rico, G.O.: The annotated logics \(OP_{\rm BL}\). In: Carnielli, W., Coniglio, M., D’Ottaviano, I. (eds.) Paraconsistency: The Logical Way to the Inconsistent, pp. 411–433. Marcel Dekker, New York (2002)Google Scholar
  51. 51.
    Routley, R., Plumwood, V., Meyer, R.K., Brady, R: Relevant Logics and Their Rivals, vol. 1. Ridgeview, Atascadero (1982)Google Scholar
  52. 52.
    Subrahmanian, V.: On the semantics of quantitative logic programs. In: Proceeding of the 4th IEEE Symposium on Logic Programming, pp. 173–182 (1987)Google Scholar
  53. 53.
    van Fraassen, B.C.: Facts and tautological entailment. J. Philos. 66, 477–487 (1069)CrossRefGoogle Scholar
  54. 54.
    Vasil’ev, N.A.: Imaginary Logic (in Russian). Nauka, Moscow (1989)Google Scholar
  55. 55.
    Wansing, H.: The Logic of Information Structures. Springer, Berlin (1993)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.C-Republic, 1-20-1 Higashi-Yurigaoka, Asao-kuKawasakiJapan
  2. 2.Department of PhilosophyFederal University of Santa CatarinaFlorianópolisBrazil

Personalised recommendations